Photostability of the UV filter benzophenone-3 and its effect on the photodegradation of benzotriazole in water
You-Sheng Liu A B , Guang-Guo Ying A B , Ali Shareef A and Rai S. Kookana A CA Water for a Healthy Country Flagship, CSIRO Land and Water, PMB 2, Glen Osmond, SA 5064, Australia. Email: victor.liuyousheng@gmail.com; guangguo.ying@gmail.com; ali.shareef@csiro.au
B State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, P. R. China.
C Corresponding author. Email: rai.kookana@csiro.au
Environmental Chemistry 8(6) 581-588 https://doi.org/10.1071/EN11068
Submitted: 5 July 2011 Accepted: 17 July 2011 Published: 4 October 2011
Environmental context. The environmental fate of a particular contaminant can be influenced by the presence of other chemicals. It is shown that the photodegradation in water of benzotriazole, a common household and industrial chemical, is reduced in the presence of a sunscreen compound. Thus, contaminants such as benzotriazole may persist longer in the environment in the presence of chemicals designed to filter ultraviolet rays, such as those used in sunscreens.
Abstract. The presence of co-solutes (e.g. UV filters) can potentially influence the environmental fate of micropollutants. The photolysis of benzotriazole (BT, an anticorrosion agent) and benzophenone-3 (BP-3, a UV filter), as well as their interactions in aqueous solutions under UV and artificial solar light with or without added humic acid (HA) and metal ions (Cu2+ and Fe3+), has been investigated. BT was found to be photosensitive under UV irradiation, but photostable under solar light. The half-lives for the photolysis of BT were 2.8 h in pure aqueous solution and increasing to 4.5 h in the presence of BP-3 (1.0 mg L–1). BP-3 was photostable under both UV and artificial solar light. Solar radiation exposure of 50 days resulted in a small loss of BP-3 (8 %) in pure aqueous solution, and resulted in a greater loss of BP-3 (up to 31 %) at 50 mg L–1 of HA. UV irradiation of the BT solutions containing BP-3 led to formation of five photoproducts, formed mainly by N–N and N–NH bond scission, polymerisation and hydroxylation. In the case of BP-3, one major photoproduct was isolated and tentatively identified as 2,4-dimethylanisole, formed by the loss of hydroxy and benzoyl groups.
Additional keywords: humic acid, photolysis, photoproduct.
References
[1] M. E. Balmer, H. R. Buser, M. D. Muller, T. Poiger, Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes. Environ. Sci. Technol. 2005, 39, 953.| Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlSisQ%3D%3D&md5=ba9dd768c5581a35dad6ac118f8c425eCAS |
[2] M. S. Diaz-Cruz, M. J. Garcia-Galan, D. Barcelo, Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography–quadrupole linear ion trap–mass spectrometry. J. Chromatogr. A 2008, 1193, 50.
| Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography–quadrupole linear ion trap–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVWqtbw%3D&md5=f53f96dc36fa45b83dfa370d0133d63cCAS |
[3] C. S. Okereke, S. A. Barat, M. S. Abdel-Rahman, Safety evaluation of benzophenone-3 after dermal administration in rats. Toxicol. Lett. 1995, 80, 61.
| Safety evaluation of benzophenone-3 after dermal administration in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot12gtb8%3D&md5=7385bd2aa99ca2f7063ccc9db421824fCAS |
[4] M. M. Rieger, Photostability of cosmetic ingredients on the skin: disposal of energy by photoactive molecules in sunscreens can adversely affect the sunscreens function and safety. Cosmet. Toiletries 1997, 112, 65..
[5] C. G. Daughton, T. A. Ternes, Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ. Health Perspect. 1999, 107, 907.
| Pharmaceuticals and personal care products in the environment: agents of subtle change?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1OhtA%3D%3D&md5=b17031922f29a7272823bf3770509715CAS |
[6] T. Poiger, H. R. Buser, M. E. Balmer, P. A. Bergqvist, M. D. Muller, Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes. Chemosphere 2004, 55, 951.
| Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFOntb4%3D&md5=21623bbe3c9f961c0410c48ea4da3e12CAS |
[7] R. Rodil, M. Moeder, R. Altenburger, M. Schmitt-Jansen, Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water. Anal. Bioanal. Chem. 2009, 395, 1513.
| Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyjs7bP&md5=2ce33f54dab91a756c2392ccb736e474CAS |
[8] T. Reemtsma, S. Weiss, J. Mueller, M. Petrovic, S. Gonzalez, D. Barcelo, F. Ventura, T. P. Knepper, Polar pollutant entry into the water cycle by municipal wastewater: a European perspective. Environ. Sci. Technol. 2006, 40, 5451.
| Polar pollutant entry into the water cycle by municipal wastewater: a European perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslKmu7s%3D&md5=f1ca3dc62aa836d875f68b46b3251a1fCAS |
[9] D. Voutsa, P. Hartmann, C. Schaffner, W. Giger, Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environ. Sci. Pollut. Res. 2006, 13, 333.
| Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCrtbzM&md5=c1a7e026c4c05c4a843f15803f7929f9CAS |
[10] S. Weiss, J. Jakobs, T. Reemtsma, Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation. Environ. Sci. Technol. 2006, 40, 7193.
| Discharge of three benzotriazole corrosion inhibitors with municipal wastewater and improvements by membrane bioreactor treatment and ozonation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGnsLvM&md5=5cbef69149c89fda2394630344593cf0CAS |
[11] S. Weiss, T. Reemtsma, Determination of Benzotriazole corrosion inhibitors from aqueous environmental samples by liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Chem. 2005, 77, 7415.
| Determination of Benzotriazole corrosion inhibitors from aqueous environmental samples by liquid chromatography electrospray ionization tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2nurfO&md5=62cc2156c2d1294a8daca19fbe518e41CAS |
[12] W. Giger, C. Schaffner, H. P. E. Kohler, Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environ. Sci. Technol. 2006, 40, 7186.
| Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKjs77E&md5=f3d5a56bf4fb992de143ef4238d7462aCAS |
[13] A. Kiss, E. Fries, Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany). Environ. Sci. Pollut. Res. 2009, 16, 702.
| Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ntr7K&md5=08a08199a685f7b88fce5610359e3e50CAS |
[14] R. Andreozzi, V. Caprio, A. Insola, G. Longo, Photochemical degradation of benzotriazole in aqueous solution. J. Chem. Technol. Biotechnol. 1998, 73, 93.
| Photochemical degradation of benzotriazole in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFahsg%3D%3D&md5=7138455fac50a440371c39b287a16a55CAS |
[15] C. L. Gruden, S. M. Dow, M. T. Hernandez, Fate and toxicity of aircraft deicing fluid additives through anaerobic digestion. Water Environ. Res. 2001, 73, 72.
| Fate and toxicity of aircraft deicing fluid additives through anaerobic digestion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVCjsbk%3D&md5=260a704d76be7befa1f69cd9fe2d48bdCAS |
[16] J. Hollingsworth, R. Sierra-Alvarez, M. Zhou, K. L. Ogden, J. A. Field, Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere 2005, 59, 1219.
| Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Ckt7Y%3D&md5=f297da17d8b76d05f6842aa3c016b95bCAS |
[17] R. G. Zepp, B. C. Faust, J. Hoigne, Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol. 1992, 26, 313.
| Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksFyjsw%3D%3D&md5=50426059ef707410b2cc494653defa31CAS |
[18] M. Kamiya, K. Kameyama, Effects of selected metal ions on photodegradation of organophosphorus pesticides sensitized by humic acids. Chemosphere 2001, 45, 231.
| Effects of selected metal ions on photodegradation of organophosphorus pesticides sensitized by humic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFWrs78%3D&md5=5d8bc1569298695e46e204d7606daa78CAS |
[19] R. G. Zepp, G. L. Baughan, P. F. Schlotzhauer, Comparison of photochemical behavior of various humic substances in water: I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances. Chemosphere 1981, 10, 109.
| Comparison of photochemical behavior of various humic substances in water: I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhvFOgtrw%3D&md5=87de38fd31922e71a7438d87677444bdCAS |
[20] F. H. Frimmel, H. Bauer, J. Pautzien, P. Muraseecco, A. M. Braun, Laser flash photolysis of dissolved aquatic humic material and the sensitized production of singlet oxygen. Environ. Sci. Technol. 1987, 21, 541.
| Laser flash photolysis of dissolved aquatic humic material and the sensitized production of singlet oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgtrw%3D&md5=eaa35eeeea5e1201ba7617d29cbc0400CAS |
[21] F. H. Frimmel, D. P. Hessler, Photochemical degradation of triazine and anilide pesticides in natural waters, in Aquatic and Surface Photochemistry (Eds G. R. Helz, R. G. Zepp, D. G. Crosby) 1994, p. 137 (Lewis: Boca Raton, FL).
[22] Y. Sanlaville, S. Guittonneau, M. Mansour, E. A. Feicht, P. Meallier, A. Kettrup, Photosensitized degradation of terbuthylazine in water. Chemosphere 1996, 33, 353.
| Photosensitized degradation of terbuthylazine in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1eltL8%3D&md5=39893c88c75d43908a89c2cf020ca0c1CAS |
[23] R. G. Zepp, N. L. Wolfe, J. A. Gordon, G. L. Baughman, Dynamics of 2, 4-D esters in surface waters. Hydrolysis, photolysis, and vaporization. Environ. Sci. Technol. 1975, 9, 1144.
| Dynamics of 2, 4-D esters in surface waters. Hydrolysis, photolysis, and vaporization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XntVeitw%3D%3D&md5=2402bc0c0a8515640ca69e70dd432fa0CAS |
[24] J. Hawari, A. Demeter, R. Samson, Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of aroclor 1254 in soil samples by solar radiation. Environ. Sci. Technol. 1992, 26, 2022.
| Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: dechlorination of aroclor 1254 in soil samples by solar radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlKqs7c%3D&md5=cb0da611e3810df08006fe762520e668CAS |
[25] J. H. Baxendale, J. A. Wilson, The photolysis of hydrogen peroxide at high light intensities. Trans. Faraday Soc. 1957, 53, 344.
| The photolysis of hydrogen peroxide at high light intensities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXnsFGqtw%3D%3D&md5=c13d4a5a0586b1792506bfbdbade02e1CAS |
[26] J. J. Pignatello, Dark and photoassisted iron (3+) – catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 1992, 26, 944.
| Dark and photoassisted iron (3+) – catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitVSgtrs%3D&md5=0e45936d17df5c3a15e25453ba00e94aCAS |
[27] B. C. Faust, A review of the photochemical redox reactions of iron(III) species in atmospheric, oceanic, and surface water: influences on geochemical cycles and oxidant formation, in Aquatic and Surface Photochemistry (Eds G. R. Helz, R. G. Zepp, D. G. Crosby) 1994, p. 3 (Lewis: Boca Raton, FL).
[28] J. R. Bolton, S. R. Carter, Homogeneous photodegradation of pollutants in contaminated water: an introduction, in Aquatic and Surface Photochemistry (Eds G. R. Helz, R. G. Zepp, D. G. Crosby) 1994, p. 467 (Lewis: Boca Raton, FL).
[29] P. Ausloos, C. Clifton, S. G. Lias, A. I. Mikaya, S. E. Stein, D. V. Tchekhovskoi, O. D. Sparkman, V. Zaikin, D. Zhu, The critical evaluation of a comprehensive mass spectral library. J. Am. Soc. Mass Spectrom. 1999, 10, 287.
| The critical evaluation of a comprehensive mass spectral library.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlensL0%3D&md5=3acd24871a0026273e6fc4a975f49d2cCAS |
[30] J. M. Halket, A. Przyborowska, S. E. Stein, W. G. Mallard, S. Down, R. A. Chalmers, Deconvolution gas chromatography mass spectrometry of urinary organic acids – potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun. Mass Spectrom. 1999, 13, 279.
| Deconvolution gas chromatography mass spectrometry of urinary organic acids – potential for pattern recognition and automated identification of metabolic disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlKntrw%3D&md5=56d503bcb38a6e974cd9b5290ecc80eaCAS |
[31] S. E. Stein, An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 1999, 10, 770.
| An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFert7Y%3D&md5=d69f40a0640f46ee6dd3a24f3b9bbdd8CAS |
[32] J. Kopka, N. Schauer, S. Krueger, C. Birkemeyer, B. Usadel, E. Bergmuller, P. Dormann, W. Weckwerth, Y. Gibon, M. Stitt, L. Willmitzer, A. R. Fernie, D. Steinhauser, GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 2005, 21, 1635.
| GMD@CSB.DB: the Golm Metabolome Database.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlGgsrg%3D&md5=12776221c72e0233cc50b11b8b19d40cCAS |
[33] W. Pongsuwan, E. Fukusaki, T. Bamba, T. Yonetani, T. Yamahara, A. Kobayashi, Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agric. Food Chem. 2007, 55, 231.
| Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlaru7nL&md5=f73c43c105d38ddd663404d00a3a0793CAS |
[34] T. Shepherd, G. Dobson, S. R. Verrall, S. Conner, D. W. Griffiths, J. W. McNicol, H. V. Davies, D. Stewart, Potato metabolomics by GC-MS: what are the limiting factors? Metabolomics 2007, 3, 475.
| Potato metabolomics by GC-MS: what are the limiting factors?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVals7vO&md5=7e4d491c25f5206687bc3ca22f146bd1CAS |
[35] D. R. Rudell, J. P. Mattheis, E. A. Curry, Prestorage ultraviolet-white light irradiation alters apple peel metabolome. J. Agric. Food Chem. 2008, 56, 1138.
| Prestorage ultraviolet-white light irradiation alters apple peel metabolome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFelsA%3D%3D&md5=f0b405430bacebd83f2ddbc53977a21aCAS |
[36] D. Sancho, M. Vega, L. Deban, R. Pardo, E. Barrado, Electrochemical determination of the effect of copper(II) on the photochemical degradation of the pesticide metamitron. J. Environ. Sci. Health A. 1997, 32, 943.
| Electrochemical determination of the effect of copper(II) on the photochemical degradation of the pesticide metamitron.Crossref | GoogleScholarGoogle Scholar |
[37] D. Sancho, M. Vega, L. Deban, R. Pardo, E. Barrado, Electrochemical determination of the effect of lead(II) on the photochemical degradation of the pesticide metamitron. Toxicol. Environ. Chem. 1999, 68, 259.
| Electrochemical determination of the effect of lead(II) on the photochemical degradation of the pesticide metamitron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVGru74%3D&md5=bbba1d3b7752a03440ae40302c2f86b0CAS |
[38] E. Krzyżanowska, K. Klonowska, A. Olszanowski, A. Borowiak-Resterna, Photo-degradation of hydrophobic derivatives of pyridinecarboxylic acid as copper extractants from chloride media. Solvent. Extr. Ion. Exch. 2002, 20, 375.
| Photo-degradation of hydrophobic derivatives of pyridinecarboxylic acid as copper extractants from chloride media.Crossref | GoogleScholarGoogle Scholar |
[39] A. Ricci, M. N. Chretien, L. Maretti, J. C. Scaiano, TiO2-promoted mineralization of organic sunscreens in water suspension and sodium dodecyl sulfate micelles. Photochem. Photobiol. Sci. 2003, 2, 487.
| TiO2-promoted mineralization of organic sunscreens in water suspension and sodium dodecyl sulfate micelles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlGls74%3D&md5=9e51b5b29ed50c77fb4a9a928c3ca35fCAS |
[40] Y. S. Liu, G. G. Ying, A. Shareef, R. S. Kookana, Photolysis of benzotriazole and formation of its polymerised photoproducts in aqueous solutions under UV irradiation. Environ. Chem. 2011, 8, 174.
| Photolysis of benzotriazole and formation of its polymerised photoproducts in aqueous solutions under UV irradiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1yisro%3D&md5=b986250fa4527553673ccde2a096b03bCAS |
[41] H. Shizuka, H. Hiratsuka, M. Jinguji, H. Hiraoka, Photolysis of benzotriazole in alcoholic glass at 77 K. J. Phys. Chem. 1987, 91, 1793.
| Photolysis of benzotriazole in alcoholic glass at 77 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXht12jsLg%3D&md5=4c0bf98c671622e9e6d17a0b7eda9118CAS |
[42] P. A. Wender, S. M. Touami, C. Alayrac, U. C. Philipp, Triazole photonuclease: a new family of light activatable DNA cleaving agents. J. Am. Chem. Soc. 1996, 118, 6522.
| Triazole photonuclease: a new family of light activatable DNA cleaving agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1GrsbY%3D&md5=5dbe4db72ba0e59a3fd9cc591c9ba278CAS |
[43] H. Wang, C. Burda, G. Persy, J. Wirz, Photochemical of 1H-benzotriazole in aqueous solution: a photolatent base. J. Am. Chem. Soc. 2000, 122, 5849.
| Photochemical of 1H-benzotriazole in aqueous solution: a photolatent base.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2qtb4%3D&md5=bcba054c005c08c18bbfce2f06a9ea44CAS |
[44] Y. B. Ding, C. Z. Yang, L. H. Zhu, J. D. Zhang, Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole. J. Hazard. Mater. 2010, 175, 96.
| Photoelectrochemical activity of liquid phase deposited TiO2 film for degradation of benzotriazole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOqsLjN&md5=43ef2011677ea07202d39ce8291f4359CAS |