Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs
Stephen Lofts A B and Edward Tipping AA Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK.
B Corresponding author. Email: stlo@ceh.ac.uk
Environmental Chemistry 8(5) 501-516 https://doi.org/10.1071/EN11049
Submitted: 13 April 2011 Accepted: 26 July 2011 Published: 14 October 2011
Environmental context. The chemical speciation of metals in waters is of great importance in determining their transport, fate and effects in the environment. Modelling chemical speciation is valuable for making predictions about these effects. Here a model of metal speciation is tested against field data, and recommendations are made as to how both model and measurements might be improved in future.
Abstract. A key question in the evaluation of chemical speciation models is: how well do model predictions compare against speciation measurements? To address this issue, the performance of WHAM/Model VII in predicting free metal ion concentrations in field samples has been evaluated. A statistical sampling method considering uncertainties in input measurements, model parameters and the binding activity of dissolved organic matter was used to generate distributions of predicted free ion concentrations. Model performance varied with the metal considered and the analytical technique used to measure the free ion. Generally, the best agreement between observation and prediction was seen for aluminium, cobalt, nickel, zinc and cadmium. Important differences in agreement between model and observations were seen, depending upon the analytical technique. In particular, concentrations of free ion determined with voltammetric techniques were largely over-predicted by the model. Uncertainties in model predictions varied among metals. Only for aluminium could discrepancies between observation and model could be explained by uncertainties in input measurements and model parameters. For the other metals, the ranges of model predictions were mostly too small to explain the discrepancies between model and observation. Incorporating the effects of uncertainty into speciation model predictions allows for more rigorous assessment of model performance.
References
[1] M. F. Benedetti, C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, Metal ion binding to humic substances: application of the nonideal competitive adsorption model. Environ. Sci. Technol. 1995, 29, 446.| Metal ion binding to humic substances: application of the nonideal competitive adsorption model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFOrs7s%3D&md5=de4e511b12fb5464799071744f2c0345CAS |
[2] E. Tipping, Humic Ion Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
| Humic Ion Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=b691b52d3cb423544a67e094a347a8e7CAS |
[3] E. Tipping, WHAM – a chemical-equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site electrostatic model of ion-binding by humic substances. Comput. Geosci. 1994, 20, 973.
| WHAM – a chemical-equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site electrostatic model of ion-binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlyhtrY%3D&md5=ff1fad234a23210b70b4a7a0af81dbebCAS |
[4] D. N. Di Toro, H. E. Allen, H. L. Bergman, J. S. Meyer, P. R. Paquin, R. C. Santore, Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 2001, 20, 2383.
| Biotic ligand model of the acute toxicity of metals. 1. Technical basis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWnuw%3D%3D&md5=98ac74875b8364d484a1bf8d1a2dd7c9CAS |
[5] S. Lofts, E. Tipping, Solid-solution metal partitioning in the Humber Rivers: application of WHAM and SCAMP. Sci. Total Environ. 2000, 251–252, 381.
| Solid-solution metal partitioning in the Humber Rivers: application of WHAM and SCAMP.Crossref | GoogleScholarGoogle Scholar |
[6] E. J. J. Kalis, L. Weng, F. Dousma, E. J. M. Temminghoff, W. H. van Riemsdijk, Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique. Environ. Sci. Technol. 2006, 40, 955.
| Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlars7rK&md5=34b646739eecb63e5febbd1e42ffae9dCAS |
[7] J. Qian, H. B. Xue, L. Sigg, A. Albrecht, Complexation of cobalt by natural ligands in freshwater. Environ. Sci. Technol. 1998, 32, 2043.
| Complexation of cobalt by natural ligands in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslKnt70%3D&md5=267701c582d73362b06071faa3a437aaCAS |
[8] S. Meylan, N. Odzak, R. Behra, L. Sigg, Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. Anal. Chim. Acta 2004, 510, 91.
| Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivF2jurY%3D&md5=a5c0c25c8e589187eab5e0916e1c83f5CAS |
[9] H. B. Xue, A. Oestreich, D. Kistler, L. Sigg, L., Free cupric ion concentrations and Cu complexation in selected Swiss lakes and rivers. Aquat. Sci. 1996, 58, 69.
| L., Free cupric ion concentrations and Cu complexation in selected Swiss lakes and rivers.Crossref | GoogleScholarGoogle Scholar |
[10] A. Plöger, E. Fischer, H.-P. Nirmaier, L. M. Laglera, D. Monticelli, C. M. G. van den Berg, Lead and copper speciation in remote mountain lakes. Limnol. Oceanogr. 2005, 50, 995.
| Lead and copper speciation in remote mountain lakes.Crossref | GoogleScholarGoogle Scholar |
[11] H. B. Xue, L. Sigg, Free cupric ion concentration and CuII speciation in a eutrophic lake. Limnol. Oceanogr. 1993, 38, 1200.
| Free cupric ion concentration and CuII speciation in a eutrophic lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1Kiu7s%3D&md5=a8464fdffc66f66535e1913741751e99CAS |
[12] H. B. Xue, L. Sigg, Zinc speciation in lake waters and its determination by ligand-exchange with EDTA and differential-pulse anodic-stripping voltammetry. Anal. Chim. Acta 1994, 284, 505.
| Zinc speciation in lake waters and its determination by ligand-exchange with EDTA and differential-pulse anodic-stripping voltammetry.Crossref | GoogleScholarGoogle Scholar |
[13] J. Cao, H. B. Xue, L. Sigg, Effects of pH and Ca competition on complexation of cadmium by fulvic acids and by natural organic ligands from a river and a lake. Aquat. Geochem. 2006, 12, 375.
| Effects of pH and Ca competition on complexation of cadmium by fulvic acids and by natural organic ligands from a river and a lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOisLbL&md5=f8e19c93f4f03fd1ef414eb33313b711CAS |
[14] C. Fortin, P. G. C. Campbell, An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media. Int. J. Environ. Anal. Chem. 1998, 72, 173.
| An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXis12gtLY%3D&md5=b0acd6495e30fa46d99e1268c2d3e380CAS |
[15] Y. Gopalapillai, C. L. Chakrabarti, D. R. S. Lean, Assessing toxicity of mining effluents: equilibrium- and kinetics-based metal speciation and algal bioassay. Environ. Chem. 2008, 5, 307.
| Assessing toxicity of mining effluents: equilibrium- and kinetics-based metal speciation and algal bioassay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWitLbO&md5=18f6afcda83ace82eae48252e329c944CAS |
[16] E. R. Unsworth, K. W. Warnken, H. Zhang, W. Davison, F. Black, J. Buffle, J. Cao, R. Cleven, J. Galceran, P. Gunkel, E. Kalis, D. Kistler, H. P. van Leeuwen, M. Martin, S. Noël, Y. Nur, N. Odzak, J. Puy, W. van Riemsdijk, L. Sigg, E. J. M. Temminghoff, M.-L. Tercier-Waeber, S. Topperwien, R. M. Town, L. Weng, H. B. Xue, Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ. Sci. Technol. 2006, 40, 1942.
| Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSku7o%3D&md5=0fb2b12c18be39d9d0d730904acfe0baCAS |
[17] Y. Gopalapillai, I. I. Fasfous, J. D. Murimboh, T. Yapici, P. Chakraborty, C. L. Chakrabarti, Determination of free nickel ion concentrations using the ion exchange technique: application to aqueous mining and municipal effluents. Aquat. Geochem. 2008, 14, 99.
| Determination of free nickel ion concentrations using the ion exchange technique: application to aqueous mining and municipal effluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFeiur0%3D&md5=f5e722db583d129fcd30221d1503a248CAS |
[18] E. J. M. Temminghoff, A. C. C. Plette, R. van Eck, W. H. Van Riemsdijk, Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane technique. Anal. Chim. Acta 2000, 417, 149.
| Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslWlsb8%3D&md5=6e1a4f945d50d431a5aed1cf42c4bc9bCAS |
[19] S. E. Bryan, E. Tipping, J. Hamilton-Taylor, Comparison of measured and modelled copper binding by natural organic matter in freshwater. Comp. Biochem. Physiol. C 2002, 133, 37.
| Comparison of measured and modelled copper binding by natural organic matter in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nmsFGhtA%3D%3D&md5=693e506c4b8d7ccf08a378369ea390a7CAS |
[20] E. Tipping, C. Woof, M. A. Hurley, Humic substances in acid surface waters; modelling aluminium binding, contribution to ionic charge-balance, and control of pH. Water Res. 1991, 25, 425.
| Humic substances in acid surface waters; modelling aluminium binding, contribution to ionic charge-balance, and control of pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlClsr4%3D&md5=9c828161bf12e3e2ceaf4f7a4a5cf527CAS |
[21] G. M. Anderson, Error propagation by the Monte Carlo method in geochemical calculations. Geochim. Cosmochim. Acta 1976, 40, 1533.
| Error propagation by the Monte Carlo method in geochemical calculations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXhsFynsrw%3D&md5=1f1b6924b4433c6b2aaa54e7967dc9dfCAS |
[22] J. E. Groenenberg, G. F. Koopmans, R. N. J. Comans, Uncertainty analysis of the nonideal competitive adsorption–Donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution. Environ. Sci. Technol. 2010, 44, 1340.
| Uncertainty analysis of the nonideal competitive adsorption–Donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVyh&md5=d867598d11dd1c3c709e869b0f41738dCAS |
[23] E. Tipping, S. Lofts, J. E. Sonke, Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem. 2011, 8, 225.
| Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWrsL0%3D&md5=5cb71398b3ebf2511827cb4fa899fa83CAS |
[24] S. Lofts, E. Tipping, An assemblage model for cation binding by natural particulate matter. Geochim. Cosmochim. Acta 1998, 62, 2609.
| An assemblage model for cation binding by natural particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFamsbc%3D&md5=4603a39c1785b27c653cbc74d4e8ef1cCAS |
[25] E. Tipping, C. Rey-Castro, S. E. Bryan, J. Hamilton-Taylor, AlIII and FeIII binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim. Cosmochim. Acta 2002, 66, 3211.
| AlIII and FeIII binding by humic substances in freshwaters, and implications for trace metal speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslKktbk%3D&md5=a25ce479a1d5c2747391b029a1720eccCAS |
[26] S. Lofts, E. Tipping, J. Hamilton-Taylor, The chemical speciation of FeIII in freshwaters. Aquat. Geochem. 2008, 14, 337.
| The chemical speciation of FeIII in freshwaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gtLzN&md5=f58811c57a05d7bc8eefbd42797526e4CAS |
[27] X. Liu, F. J. Millero, The solubility of iron hydroxide in sodium chloride solutions. Geochim. Cosmochim. Acta 1999, 63, 3487.
| The solubility of iron hydroxide in sodium chloride solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCkt78%3D&md5=a0515a92080d9cb489c23b3f96ebd2a6CAS |
[28] D. T. Monteith, C. D. Evans, The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue. Environ. Pollut. 2005, 137, 3.
| The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWjt7Y%3D&md5=75992276293f220388ced92fc0a0b241CAS |
[29] C. T. Driscoll, A procedure for the fractionation of aqueous aluminium in dilute acid waters. Int. J. Environ. Anal. Chem. 1984, 16, 267.
| A procedure for the fractionation of aqueous aluminium in dilute acid waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhvFOms78%3D&md5=7795c2721c444add752a5bad6a372299CAS |
[30] D. A. Dzombak, F. M. M. Morel, Surface Complexation Modeling: Hydrous Ferric Oxide 1990 (Wiley: New York).
[31] B. Lyvén, M. Hassellov, D. R. Turner, C. Haraldsson, K. Andersson, Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochim. Cosmochim. Acta 2003, 67, 3791.
| Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS.Crossref | GoogleScholarGoogle Scholar |
[32] J. A. B. Bass, R. Blust, R. T. Clarke, T. A. Corbin, W. Davison, K. A. C. De Schamphelaere, C. R. Janssen, E. J. J. Kalis, M. G. Kelly, N. T. Kneebone, A. J. Lawlor, S. Lofts, E. J. M. Temminghoff, S. A. Thacker, E. Tipping, C. D. Vincent, K. W. Warnken, H. Zhang, Environmental Quality Standards for trace metals in the aquatic environment. Environment Agency Science Report – SC030194 2008 (Environment Agency: Bristol, UK).
[33] L. Van Laer, E. Smolders, F. Degryse, C. Janssen, K. A. C. De Schamphelaere, Speciation of nickel in surface waters measured with the Donnan membrane technique. Anal. Chim. Acta 2006, 578, 195.
| Speciation of nickel in surface waters measured with the Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSitrjJ&md5=bfe012977a2249808b8484f721b11672CAS |
[34] H. B. Xue, L. Sigg, Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake waters. Aquat. Geochem. 1999, 5, 313.
| Comparison of the complexation of Cu and Cd by humic or fulvic acids and by ligands observed in lake waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVCmtw%3D%3D&md5=cede0cb071b74a94db784790604f9bd1CAS |
[35] T. F. Rozan, G. Benoit, Geochemical factors controlling free Cu ion concentrations in river water. Geochim. Cosmochim. Acta 1999, 63, 3311.
| Geochemical factors controlling free Cu ion concentrations in river water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCks7Y%3D&md5=f27a3b2db2e7c8d810e37415c0301618CAS |
[36] S. Baken, F. Degryse, L. Verheyen, R. Merckx, E. Smolders, Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci. Technol. 2011, 45, 2584.
| Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFKqtbo%3D&md5=19dc5ea2e522f45f70553e4014b20655CAS |
[37] K. R. Murphy, C. A. Stedmon, T. D. Waite, G. M. Ruiz, Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 2008, 108, 40.
| Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGlu7vL&md5=d4b4ed64e13935e10de3c3ef3ea25a8aCAS |
[38] G. C. Woods, M. J. Simpson, P. J. Koerner, A. Napoli, A. J. Simpson, HILIC-NMR: toward the identification of individual molecular components in dissolved organic matter. Environ. Sci. Technol. 2011, 45, 3880.
| HILIC-NMR: toward the identification of individual molecular components in dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1ylur8%3D&md5=803599148995f47530e6c56838c9de37CAS |
[39] H. P. van Leeuwen, R. M. Town, Kinetic limitations in measuring stabilities of metal complexes by competitive ligand exchange-adsorptive stripping voltammetry (CLEAdSV). Environ. Sci. Technol. 2005, 39, 7217.
| Kinetic limitations in measuring stabilities of metal complexes by competitive ligand exchange-adsorptive stripping voltammetry (CLEAdSV).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXns1aisLk%3D&md5=e4d1bfed3c607ae97e29f79a972d84f9CAS |
[40] M. Filella, R. Town, J. Buffle, Speciation in freshwaters, in Chemical speciation in the environment (Eds. A. M. Ure, C. M. Davidson) 1995, pp. 169–200 (Chapman & Hall: Glasgow).
[41] E. Tipping, H. T. Carter, Aluminium speciation in streams and lakes of the UK Acid Waters Monitoring Network, modelled with WHAM. Sci. Total Environ. 2011, 409, 1550.
| Aluminium speciation in streams and lakes of the UK Acid Waters Monitoring Network, modelled with WHAM.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWrsL8%3D&md5=164fda39e2159298cbbd6cd6ba5e6252CAS |
[42] D. M. Di Toro, H. E. Allen, H. L. Bergman, J. S. Meyer, P. R. Paquin, R. C. Santore, Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 2001, 20, 2383.
| Biotic ligand model of the acute toxicity of metals. 1. Technical basis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWnuw%3D%3D&md5=98ac74875b8364d484a1bf8d1a2dd7c9CAS |
[43] K. A. C. De Schamphelaere, C. R. Janssen, Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ. Toxicol. Chem. 2004, 23, 1365.
| Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1ylsL0%3D&md5=f3710f7b300ce4ab7a1e65b23cb79d33CAS |
[44] K. A. C. De Schamphelaere, S. Lofts, C. R. Janssen, Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters. Environ. Toxicol. Chem. 2005, 24, 1190.
| Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslantbc%3D&md5=1b2297ccd637ae0ca3f54e4fc8c23841CAS |
[45] E. Tipping, A. J. Lawlor, S. Lofts, L. Shotbolt, Simulating the long-term chemistry of an upland UK catchment: heavy metals. Environ. Pollut. 2006, 141, 139.
| Simulating the long-term chemistry of an upland UK catchment: heavy metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1WgsbY%3D&md5=c9ad4170ad5752dd9f8ecee294dc753eCAS |
[46] K. J. Farley, R. F. Carbonaro, C. J. Fanelli, R. Costanzo, K. J. Rader, D. M. Di Toro, TICKET-UWM: a coupled kinetic, equilibrium, and transport screening model for metals in lakes. Environ. Toxicol. Chem. 2011, 30, 1278.
| TICKET-UWM: a coupled kinetic, equilibrium, and transport screening model for metals in lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1yhu7s%3D&md5=d60ecf71e28efa2b998bbd72056ae6dcCAS |
[47] F. H. Denison, J. Garnier-Laplace, The effects of database parameter uncertainty on uranium(VI) equilibrium calculations. Geochim. Cosmochim. Acta 2005, 69, 2183.
| The effects of database parameter uncertainty on uranium(VI) equilibrium calculations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsleqs70%3D&md5=3a83ca257d9a5a4f3e4b3cccdd82aeedCAS |
[48] J. W. Guthrie, N. M. Hassan, M. S. A. Salam, I. I. Fasfous, C. A. Murimboh, J. Murimboh, C. L. Chakrabarti, D. C. Grégoire, Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Anal. Chim. Acta 2005, 528, 205.
| Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslyhsg%3D%3D&md5=e26b5ea1cc1d7f64da611a8e7efe21eeCAS |
[49] C. Fortin, Y. Couillard, B. Vigneault, P. G. C. Campbell, Determination of Free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange. Aquat. Geochem. 2010, 16, 151.
| Determination of Free Cd, Cu and Zn concentrations in lake waters by in situ diffusion followed by column equilibration ion-exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjt7rN&md5=3772709bab6fd64af7f601da71a11dc3CAS |