Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Fractionation of lead in soil by isotopic dilution and sequential extraction

N. R. Atkinson A , E. H. Bailey A , A. M. Tye B , N. Breward B and S. D. Young A C
+ Author Affiliations
- Author Affiliations

A Division of Agriculture and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.

B British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK.

C Corresponding author. Email: scott.young@nottingham.ac.uk

Environmental Chemistry 8(5) 493-500 https://doi.org/10.1071/EN11020
Submitted: 24 February 2011  Accepted: 25 May 2011   Published: 13 September 2011

Environmental context. The chemical reactivity of lead in soil is difficult to assess and depends on both soil conditions and the origins of the lead. This paper tests the combined application of lead isotopic techniques and chemical extraction against our understanding of lead fractionation in soils. Possibly against expectation, it appears that the ‘reactivity’ of lead can be high and yet there is tentative evidence that the original source of the metal affects its fractionation in soil, even after long contact times.

Abstract. ‘Reactivity’ or ‘lability’ of lead is difficult to measure using traditional methods. We investigated the use of isotopic dilution with 204Pb to determine metal reactivity in four soils historically contaminated with contrasting sources of Pb, including (i) petrol-derived Pb, (ii) Pb/Zn minespoil, (iii) long-term sewage sludge application and (iv) 19th century urban waste disposal; total soil Pb concentrations ranged from 217 to 13 600 mg kg–1. A post-spike equilibration period of 3 days and suspension in 5.0 × 10–4 M ethylenediaminetetraacetic acid provided reasonably robust conditions for measuring isotopically exchangeable Pb. However, in acidic organic soils a dilute Ca(NO3)2 electrolyte may be preferable to avoid mobilisation of ‘non-labile’ Pb. Results showed that the reactive pool of soil Pb can be a large proportion of the total soil lead content but varies with the original Pb source. A comparison of isotopic exchangeability with the results of a sequential extraction procedure showed that (isotopically) ‘non-labile’ Pb may be broadly equated with ‘residual’ Pb in organic soils. However, in mineral soils the ‘carbonate’ and ‘oxide-bound’ Pb fractions included non-labile forms of Pb. The individual isotopic signatures of labile and non-labile Pb pools suggested that, despite prolonged contact with soil, differences between the lability of the original contaminant and the native soil Pb may remain.

Additional keywords: contamination, E-value, metal lability, sewage sludge, stable isotope.


References

[1]  R. M. Semlali, J.-B. Dessogne, F. Monna, J. Bolte, S. Azimi, N. Navarro, L. Denaix, M. Loubet, C. Chateau, F. van Oort, Modelling lead input and output in soils using lead isotope geochemistry. Environ. Sci. Technol. 2004, 38, 1513.
Modelling lead input and output in soils using lead isotope geochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFCnsQ%3D%3D&md5=2d217c06e20c997c2d5a06dece6246d2CAS |

[2]  D. Weiss, W. Shotyk, P. G. Appleby, J. D. Kramers, A. Cheburkin, Atmospheric Pb deposition since the industrial revolution recorded by five Swiss peat profiles: enrichment factors, fluxes, isotopic composition and sources. Environ. Sci. Technol. 1999a, 33, 1340.
Atmospheric Pb deposition since the industrial revolution recorded by five Swiss peat profiles: enrichment factors, fluxes, isotopic composition and sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFajtb0%3D&md5=05e6a53b2593b69151268f95fdf3fe8bCAS |

[3]  D. Weiss, W. Shotyk, J. D. Kramers, M. Gloor, Sphagnum mosses as archives of recent and past atmospheric lead deposition in Switzerland. Atmos. Environ. 1999b, 33, 3751.
Sphagnum mosses as archives of recent and past atmospheric lead deposition in Switzerland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1SjsbY%3D&md5=606e191a69ff7d50a58e1ec5000ac11bCAS |

[4]  R. Burt, M. A. Wilson, T. J. Keck, B. D. Dougherty, D. E. Strom, J. A. Lindahl, Trace element speciation in selected smelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA. Adv. Environ. Res. 2003, 8, 51.
Trace element speciation in selected smelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVOqtr8%3D&md5=d2c04a7fc58358082df13f164261204fCAS |

[5]  G. Morin, J. D. Ostergren, F. Juillot, P. Ildefonse, G. Calas, G. E. Brown, XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: importance of adsorption processes. Am. Mineral. 1999, 84, 420.
| 1:CAS:528:DyaK1MXhtlOrs7k%3D&md5=e181b806b8722364868b47d4d6b0e814CAS |

[6]  C. A. Wilson, M. S. Cresser, D. A. Davidson, Sequential element extraction of soils from abandoned farms: an investigation into the partitioning of anthropogenic element inputs from historic land use. J. Environ. Monit. 2006, 8, 439.
Sequential element extraction of soils from abandoned farms: an investigation into the partitioning of anthropogenic element inputs from historic land use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1yku7g%3D&md5=05833c50c3e2b63ab991047e1ae4bfefCAS |

[7]  D. G. Strawn, P. Hickey, A. Knudsen, L. Baker, Geochemistry of lead contaminated wetland soils amended with phosphorus. Enviro. Geol. 2007, 52, 109.
Geochemistry of lead contaminated wetland soils amended with phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOmurg%3D&md5=749ea0734c42a1515f2d2aab3311f12cCAS |

[8]  F. Lang, M. Kaupenjohann, Effect of dissolved organic matter on the precipitation and mobility of the lead compound chloropyromorphite in solution. Eur. J. Soil Sci. 2003, 54, 139.
Effect of dissolved organic matter on the precipitation and mobility of the lead compound chloropyromorphite in solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1KjtL0%3D&md5=1ab643ff858d10763053074e41d1f9d1CAS |

[9]  Soil Guideline Values for Lead Contamination 2002 (Environment Agency R&D Dissemination Centre: Swindon, UK).

[10]  B. G. Wixson, B. E. Davies (Eds), Lead in Soil: Recommended Guidelines 1993 (Society for Environmental Geochemistry and Health, Science Reviews: Northwood, UK).

[11]  N. Tongtavee, J. Shiowatana, R. G. McLaren, C. W. Gray, Assessment of lead availability in contaminated soil using isotope dilution techniques. Sci. Total Environ. 2005, 348, 244.
Assessment of lead availability in contaminated soil using isotope dilution techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWhtbrF&md5=77168a8068a7a8e8dc5ed37c62634256CAS |

[12]  S. D. Young, A. M. Tye, A. Carstensen, L. Resende, N. Crout, Methods for determining labile cadmium and zinc in soil. Eur. J. Soil Sci. 2000, 51, 129.
Methods for determining labile cadmium and zinc in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVKmsb0%3D&md5=1a3b335c284c637081e281d2e9cf1f81CAS |

[13]  D. Hammer, C. Keller, M. J. McLaughlin, R. Hamon, Fixation of metals in soil constituents and potential remobilisation by hyperaccumulating and non-hyperaccumulating plants: results from an isotopic dilution study. Environ. Pollut. 2006, 143, 407.
Fixation of metals in soil constituents and potential remobilisation by hyperaccumulating and non-hyperaccumulating plants: results from an isotopic dilution study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xls1GqtbY%3D&md5=29a0d4adf70047c9cbb7ff1f61145000CAS |

[14]  A. L. Nolan, Y. Ma, E. Lombi, M. J. McLaughlin, Measurement of labile Cu in soils using stable isotope dilution and isotope ratio analysis by ICP-MS. Anal. Bioanal. Chem. 2004, 380, 789.
Measurement of labile Cu in soils using stable isotope dilution and isotope ratio analysis by ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVarsr3I&md5=0c46fadfaef32bbcc946cc73cfdaa9faCAS |

[15]  S. Sinaj, F. Machler, E. Frossard, Assessment of isotopically exchangeable zinc in polluted and nonpolluted soils. Soil Sci. Soc. Am. J. 1999, 63, 1618.
Assessment of isotopically exchangeable zinc in polluted and nonpolluted soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFykurY%3D&md5=f20dd9d7e17c7f6353672eb9840fabc8CAS |

[16]  F. Degryse, N. Waegeneers, E. Smolders, Labile lead in polluted soils measured by stable isotope dilution. Eur. J. Soil Sci. 2007, 58, 1.
Labile lead in polluted soils measured by stable isotope dilution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVOhtLY%3D&md5=5c11f3754b7827486d994a9a727be911CAS |

[17]  H.-E. Gäbler, A. Bahr, B. Mieke, Determination of the interchangeable heavy-metal fraction in soils by isotope dilution mass spectrometry. Fresenius J. Anal. Chem. 1999, 365, 409.
Determination of the interchangeable heavy-metal fraction in soils by isotope dilution mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[18]  H.-E. Gäbler, A. Bahr, A. Heidkamp, J. Utermann, Enriched stable isotopes for determining the isotopically exchangeable element content in soils. Eur. J. Soil Sci. 2007, 58, 746.
Enriched stable isotopes for determining the isotopically exchangeable element content in soils.Crossref | GoogleScholarGoogle Scholar |

[19]  G. Welp, G. W. Brummer, Adsorption and solubility of ten metals in soil samples of different composition. J. Plant Nutr. Soil Sci. 1999, 162, 155.
Adsorption and solubility of ten metals in soil samples of different composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislaiu7o%3D&md5=08e65a848fd2edfd5af768653cd96788CAS |

[20]  J. Cotter-Howells, I. Thornton, Sources and pathways of environmental lead to children in a Derbyshire mining village. Environ. Geochem. Health 1991, 13, 127.
Sources and pathways of environmental lead to children in a Derbyshire mining village.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmvVKiurw%3D&md5=570285d652aa307108590a6ca9a21725CAS |

[21]  X. Li, I. Thornton, Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl. Geochem. 2001, 16, 1693.
Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Kms7s%3D&md5=8db3640e16741d6cebfe0c20ff3dd4d6CAS |

[22]  N. Breward, Heavy metal contaminated soils associated with drained fenland in Lancashire, England, UK, revealed by BGS soil geochemical survey. Appl. Geochem. 2003, 18, 1663.
Heavy metal contaminated soils associated with drained fenland in Lancashire, England, UK, revealed by BGS soil geochemical survey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVSluro%3D&md5=d67320db70db2e02d6eea2437f081c7dCAS |

[23]  A. D. M. Phillips, Mossland reclamation and refuse disposal in the Manchester area in the nineteenth century. Ind. Archaeol. Rev. 1980, 4, 227.

[24]  L. Willies, K. Gregory, H. Parker, Millclose – The Mine That Drowned 1989 (Peak District Mines Historical Society and Scarthin Books: Cromford, UK).

[25]  D. L. Rowell, Soil Science: Methods and Applications 1994 (Longman Scientific and Technical: Harlow, UK).

[26]  S. M. Nelms, C. R. Quétel, T. Prohaska, J. Vogl, P. D. P. Taylor, P.D.P., Evaluation of detector dead time calculation models for ICP-MS. J. Anal. At. Spectrom. 2001, 16, 333.
P.D.P., Evaluation of detector dead time calculation models for ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVKiurg%3D&md5=e54c1c846503d1a4607ab4e9b2459ba2CAS |

[27]  J. R. Bacon, K. C. Jones, S. P. McGrath, A. E. Johnston, Isotopic character of lead deposited from the atmosphere at a grassland site in the United Kingdom since 1860. Environ. Sci. Technol. 1996, 30, 2511.
Isotopic character of lead deposited from the atmosphere at a grassland site in the United Kingdom since 1860.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslOis74%3D&md5=7a435a7223391ea6ce0b1cf4cbeaa5cbCAS |

[28]  E. Lombi, R. E. Hamon, S. P. McGrath, M. J. McLaughlin, Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red Mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environ. Sci. Technol. 2003, 37, 979.
Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red Mud and identification of a non-labile colloidal fraction of metals using isotopic techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVWgtg%3D%3D&md5=7eaf5697ee06c8b96fe270c18f14b688CAS |

[29]  P. E. Jensen, L. M. Ottosen, A. J. Pedersen, Speciation of Pb in industrially polluted soils. Water Air Soil Pollut. 2006, 170, 359.
Speciation of Pb in industrially polluted soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVKntLY%3D&md5=df5daa08d6225aa4989d24e28a96fd61CAS |

[30]  J. M. Kaste, B. C. Bostick, A. J. Friedland, A. W. Schroth, T. G. Siccama, Fate and speciation of gasoline-derived lead in organic horizons of the Northeastern USA. Soil Sci. Soc. Am. J. 2006, 70, 1688.
Fate and speciation of gasoline-derived lead in organic horizons of the Northeastern USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpsl2lsb8%3D&md5=259a06aaefd6a9b7d507b1f3954e81efCAS |

[31]  M. McBride, S. Sauve, W. Hendershot, Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci. 1997, 48, 337.
Solubility control of Cu, Zn, Cd and Pb in contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltFCgsLs%3D&md5=20834ff1bb94ca8c26e3fb825f9a2efdCAS |

[32]  N. Teutsch, Y. Erel, L. Halicz, A. Banin, Distribution of natural and anthropogenic lead in Mediterranean soils. Geochim. Cosmochim. Acta 2001, 65, 2853.
Distribution of natural and anthropogenic lead in Mediterranean soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVOmu7g%3D&md5=d315d5e51a806dc89ba93df873b31d29CAS |

[33]  M. Grybos, M. Davranche, G. Gruau, P. Petitjean, Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J. Colloid Interface Sci. 2007, 314, 490.
Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsV2qs78%3D&md5=cf049188dfd3afb92872c1b0793fd45aCAS |

[34]  S. Sauvé, S. Manna, M.-C. Turmel, A. G. Roy, F. Courchesne, Solid-solution partitioning of Cd, Cu, Ni, Pb and Zn in the organic horizons of a forest soil. Environ. Sci. Technol. 2003, 37, 5191.
Solid-solution partitioning of Cd, Cu, Ni, Pb and Zn in the organic horizons of a forest soil.Crossref | GoogleScholarGoogle Scholar |

[35]  R. Terzano, M. Spagnuolo, B. Vekemans, W. de Nolf, K. Janssens, G. Falkenberg, S. Fiore, P. Ruggiero, Assessing the origin and fate of Cr, Ni, Cu, Zn, Pb, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods. Environ. Sci. Technol. 2007, 41, 6762.
Assessing the origin and fate of Cr, Ni, Cu, Zn, Pb, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFyiu70%3D&md5=babdc0a6b8b47cd7aa436a74ef368c3aCAS |

[36]  Z. A. S. Ahnstrom, D. R. Parker, Cadmium reactivity in metal contaminated soils using a coupled stable isotope dilution – sequential extraction procedure. Environ. Sci. Technol. 2001, 35, 121.
Cadmium reactivity in metal contaminated soils using a coupled stable isotope dilution – sequential extraction procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKhsLg%3D&md5=dd67ef10dca0550cd6069b1553d13256CAS |

[37]  F. Degryse, E. Smolders, D. R. Parker, Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review. Eur. J. Soil Sci. 2009, 60, 590.
Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGis7zK&md5=71defe6e38744e80cc4ef6dbda2d312fCAS |