Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Quantification of secondary organic aerosol in an Australian urban location

Melita Keywood A D , Helen Guyes B C , Paul Selleck A and Rob Gillett A
+ Author Affiliations
- Author Affiliations

A Centre for Australian Weather and Climate Research and CSIRO Marine and Atmospheric Research, PMB1, Aspendale, VIC 3195, Australia.

B School of Mathematical Sciences, Monash University, VIC 3800, Australia.

C Present address: Department of Climate Change and Energy Efficiency, GPO Box 854, Canberra, ACT 2601, Australia.

D Corresponding author. Email: melita.keywood@csiro.au

Environmental Chemistry 8(2) 115-126 https://doi.org/10.1071/EN10100
Submitted: 6 September 2010  Accepted: 3 December 2010   Published: 2 May 2011

Journal Compilation © CSIRO Publishing 2011 Open Access CC BY-NC-ND

Environmental context. Particulate matter is detrimental to human health necessitating air quality standards to ensure that populations are not exposed to harmful levels of air pollutants. We quantified, for the first time in an Australian city, secondary organic aerosol produced in the atmosphere by chemical reactions, and show that it constitutes a significant fraction of the fine particulate matter. Secondary organic aerosol should be considered in regulations to control particulate matter and ozone.

Abstract. The contribution of secondary organic aerosol (SOA) to particulate mass (PM) in an Australian urban airshed is quantified for the first time in this work. SOA is estimated indirectly using the elemental carbon tracer method. The contribution of primary organic carbon (OC) to PM is determined using ambient air quality data, which is used to indicate photochemical activity and as a tracer for a general vehicular combustion source. In addition, levoglucosan concentrations were used to determine the contribution of wood heater emissions to primary OC. The contribution of bushfire smoke to primary OC emissions was determined from the organic and elemental carbon (OC/EC) ratios measured in bushfire source samples. The median annual SOA concentration determined in this work was 1.1 µg m–3, representing ~13% of PM2.5 median concentrations on an annual basis (assuming a ratio of organic mass (OM) to OC of 1.6). Significantly higher SOA concentrations were determined when bushfire smoke affected the airshed; however, the SOA fraction of PM2.5 was greatest during the autumn and early winter months when the formation of inversions allows build up of particles produced by domestic wood-heater emissions.

Additional keywords: EC tracer method, primary carbon.


References

[1]  B. J. Turpin, J. J. Huntzicker, Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527.
Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFCgur4%3D&md5=e6b2d46420fa8e9484b30129f35b48e1CAS |

[2]  R. Strader, F. Lurmann, S. N. Pandis, Evaluation of secondary organic aerosol formation in winter. Atmos. Environ. 1999, 33, 4849.
Evaluation of secondary organic aerosol formation in winter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlOkt7k%3D&md5=8fdf52f9f3f4a34efd2371c9857a247fCAS |

[3]  H. J. Lim, B. J. Turpin, L. M. Russell, T. S. Bates, Organic and elemental carbon measurements during ACE-Asia suggest a longer atmospheric lifetime for elemental carbon. Environ. Sci. Technol. 2003, 37, 3055.
Organic and elemental carbon measurements during ACE-Asia suggest a longer atmospheric lifetime for elemental carbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVyhsLo%3D&md5=8ffa5720ab4f37255a4004f29b28ae27CAS | 12901650PubMed |

[4]  J. H. Seinfeld, S. N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change 2006, vol. xxviii (Wiley-Interscience: Hoboken, NJ).

[5]  L. M. Castro, C. A. Pio, R. M. Harrison, D. J. T. Smith, Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 2771.
Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFKntLk%3D&md5=103ea14f99e16ab2e0934cbd40902ebdCAS |

[6]  J. C. Cabada, S. N. Pandis, R. Subramanian, A. L. Robinson, A. Polidori, B. Turpin, Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method. Aerosol Sci. Technol. 2004, 38, 140.
Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtlChsb8%3D&md5=7ddc92dfb851881c86fa51308d8a7384CAS |

[7]  A. H. Goldstein, I. E. Galbally, Known and unexplored organic constituents in the earth’s atmosphere. Environ. Sci. Technol. 2007, 41, 1514.
Known and unexplored organic constituents in the earth’s atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Cnuro%3D&md5=9b2bf6f922ec36c620e0bd0bb7a42b07CAS | 17396635PubMed |

[8]  J. G. Gras, R. W. Gillet, S. T. Bentley, G. P. Ayers, T. Firestone, CSIRO–EPA Melbourne Aerosol Study: Final Report 1992 (CSIRO Atmospheric Research: Melbourne).

[9]  J. G. Gras, The Perth Haze Study: a report to the Department of Environmental Protection of Western Australia on fine-particle haze in Perth 1996 (CSIRO Atmospheric Research: Melbourne).

[10]  K. S. Docherty, E. A. Stone, I. M. Ulbrich, P. F. DeCarlo, D. C. Snyder, J. J. Schauer, R. E. Peltier, R. J. Weber, S. M. Murphy, J. H. Seinfeld, B. D. Grover, D. J. Eatough, J. L. Jimenez, Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in Riverside (SOAR-1). Environ. Sci. Technol. 2008, 42, 7655.
Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in Riverside (SOAR-1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCntLrE&md5=2cb81cd646dcaf7897c2e8fb1593d54eCAS | 18983089PubMed |

[11]  B. Brunekreef, S. T. Holgate, Air pollution and health. Lancet 2002, 360, 1233.
Air pollution and health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVWgsbk%3D&md5=0ddd9a3b474a64216f552843bbf1eb6bCAS | 12401268PubMed |

[12]  G. Lonati, M. Giugliano, P. Butelli, L. Romele, R. Tardivo, Major chemical components of PM2.5 in Milan (Italy). Atmos. Environ. 2005, 39, 1925.
Major chemical components of PM2.5 in Milan (Italy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlSlurk%3D&md5=d38ed78f34441e156747a3150f56c8fdCAS |

[13]  S. Szidat, T. M. Jenk, H. A. Synal, M. Kalberer, L. Wacker, I. Hajdas, A. Kasper-Giebl, U. Baltensperger, Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J. Geophys. Res. – Atmos. 2006, 111, D07206.
Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C.Crossref | GoogleScholarGoogle Scholar |

[14]  J. J. Cao, S. C. Lee, K. F. Ho, X. Y. Zhang, S. C. Zou, K. Fung, J. C. Chow, J. G. Watson, Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmos. Environ. 2003, 37, 1451.
Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Slu7g%3D&md5=70e8aad100d4022e8db4d96d59ebba14CAS |

[15]  J. C. Duan, J. H. Tan, D. X. Cheng, X. H. Bi, W. J. Deng, G. Y. Sheng, J. M. Fu, M. H. Wong, Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China. Atmos. Environ. 2007, 41, 2895.
Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtl2hs7c%3D&md5=f0263cab9a9127c98e7adbe36ff12faeCAS |

[16]  M. Hallquist, J. C. Wenger, U. Baltensperger, Y. Rudich, D. Simpson, M. Claeys, The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155.
The formation, properties and impact of secondary organic aerosol: current and emerging issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhs77M&md5=787056d3eddc83c5ccb442312c22b43bCAS |

[17]  A. P. Mitra, L. Morawska, C. Sharma, J. Zhang, Chapter two: methodologies for characterisation of combustion sources and for quantification of their emissions. Chemosphere 2002, 49, 903.
Chapter two: methodologies for characterisation of combustion sources and for quantification of their emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotlynur4%3D&md5=9a9065d37afded17693c12ff423fb344CAS | 12492157PubMed |

[18]  B. J. Turpin, H. J. Lim, Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 2001, 35, 602..

[19]  Q. Zhang, D. R. Worsnop, M. R. Canagaratna, J. L. Jimenez, Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmos. Chem. Phys. 2005, 5, 3289.
Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVWqtw%3D%3D&md5=021fca13c3a3a8e83e6d334b8e19be42CAS |

[20]  A. C. Aiken, P. F. Decarlo, J. H. Kroll, D. R. Worsnop, J. A. Huffman, K. S. Docherty, O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 2008, 42, 4478.
O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVymsb8%3D&md5=98672fe0e6fc236a1baab7fcbcd47abdCAS | 18605574PubMed |

[21]  Y. L. Ng, M. Minchin, Spatial and temporal allocation of emissions from wood combustion, in 15th International Clean Air & Environment Conference, Sydney, Australia, 26–30 November 2000. (CD-ROM)

[22]  R. G. Tapp, Indications of topographically induced eddies in stratified flow during a severe air pollution event. Boundary-Layer Meteorol. 1985, 33, 283.
Indications of topographically induced eddies in stratified flow during a severe air pollution event.Crossref | GoogleScholarGoogle Scholar |

[23]  Air Quality Monitoring Report 2006 – Compliance with the National Environment Protection (Ambient Air Quality) Measure. Environment Report Publication 1137 2006 (EPA Victoria). Available at http://epanote2.epa.vic.gov.au/EPA/publications.nsf/PubDocsLU/1137?OpenDocument [Verified 24 February 2011].

[24]  Air Quality Monitoring Report 2007 – Compliance with the National Environment Protection (Ambient Air Quality) Measure. Environment Report Publication 1231 2007 (EPA Victoria). Available at http://epanote2.epa.vic.gov.au/EPA/publications.nsf/PubDocsLU/1231?OpenDocument [Verified 24 February 2011].

[25]  J. Plaza, F. J. Gomez-Moreno, L. Nunez, M. Pujadas, B. Artinano, Estimation of secondary organic aerosol formation from semicontinuous OC–EC measurements in a Madrid suburban area. Atmos. Environ. 2006, 40, 1134.
Estimation of secondary organic aerosol formation from semicontinuous OC–EC measurements in a Madrid suburban area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xls1CntA%3D%3D&md5=b68cb6bc3ef39799f99fc63a18ec80eeCAS |

[26]  J. J. Cao, F. Wu, J. C. Chow, S. C. Lee, Y. Li, S. W. Chen, Z. S. An, K. K. Fung, J. G. Watson, C. S. Zhu, S. X. Liu, Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos. Chem. Phys. 2005, 5, 3127.
Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVejug%3D%3D&md5=a524a9ff19b36e838eceb9fee1d87032CAS |

[27]  J. G. Watson, J. C. Chow, Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border. Sci. Total Environ. 2001, 276, 33.
Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1SgtLY%3D&md5=26f6c15aecdd192c8d6d87d98040e037CAS | 11516138PubMed |

[28]  National Pollutant Inventory 2010 (Department of Environment, Water, Heritage and the Arts). Available at www.npi.gov.au [Verified 24 February 2011].

[29]  K. S. Na, A. A. Sawant, C. Song, D. R. Cocker, Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmos. Environ. 2004, 38, 1345.
Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVeiurw%3D&md5=145adfe29e890146bcf9cad22b578f4cCAS |

[30]  M. O. Andreae, T. W. Andreae, H. Annegarn, J. Beer, H. Cachier, P. le Canut, Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. J. Geophys. Res. – Atmos. 1998, 103, 32119.
Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXovVWitg%3D%3D&md5=70c6c18c432712c17b9ab3d2975ef43cCAS |

[31]  P. Formenti, W. Elbert, W. Maenhaut, J. Haywood, M. O. Andreae, Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. – Atmos. 2003, 108, 8576.
Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000.Crossref | GoogleScholarGoogle Scholar |

[32]  J. S. Reid, R. Koppmann, T. F. Eck, D. P. Eleuterio, A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799.
A review of biomass burning emissions. Part II: intensive physical properties of biomass burning particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrt7s%3D&md5=849675bf3e452de3baebd7f49a3e521fCAS |

[33]  M. A. Mazurek, G. R. Cass, B. R. T. Simoneit, Biological input to visibility-reducing aerosol-particles in the remote arid southwestern United States. Environ. Sci. Technol. 1991, 25, 684.
Biological input to visibility-reducing aerosol-particles in the remote arid southwestern United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXht1yjur0%3D&md5=33bcf0bbf6f4501292b9032f14c249a8CAS |

[34]  S. Lee, H. K. Kim, B. Yan, C. E. Cobb, C. Hennigan, S. Nichols, Diagnosis of aged prescribed burning plumes impacting an urban area. Environ. Sci. Technol. 2008, 42, 1438.
Diagnosis of aged prescribed burning plumes impacting an urban area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslyitw%3D%3D&md5=e3d24c22c090461a38376eb5942e666bCAS | 18441785PubMed |

[35]  G. A. Alessio, M. De Lillis, M. Fanelli, P. Pinelli, F. Loreto, Direct and indirect impacts of fire on isoprenoid emissions from Mediterranean vegetation. Funct. Ecol. 2004, 18, 357.
Direct and indirect impacts of fire on isoprenoid emissions from Mediterranean vegetation.Crossref | GoogleScholarGoogle Scholar |

[36]  A. Limbeck, M. Kulmala, H. Puxbaum, Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles. Geophys. Res. Lett. 2003, 30, 1996.
Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles.Crossref | GoogleScholarGoogle Scholar |

[37]  S. Gao, N. L. Ng, M. Keywood, V. Varutbangkul, R. Bahreini, A. Nenes, Particle phase acidity and oligomer formation in secondary organic aerosol. Environ. Sci. Technol. 2004, 38, 6582.
Particle phase acidity and oligomer formation in secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1Wqsrw%3D&md5=bfe2daa754161982ba3525940a9baaecCAS | 15669315PubMed |

[38]  B. Yan, M. Zheng, Y. T. Hu, S. Lee, H. K. Kim, A. G. Russell, Organic composition of carbonaceous aerosols in an aged prescribed fire plume. Atmos. Chem. Phys. 2008, 8, 6381.
Organic composition of carbonaceous aerosols in an aged prescribed fire plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvV2q&md5=900d9d1e858ab183a71e335aa59ba609CAS |

[39]  V. A. Lanz, M. R. Alfarra, U. Baltensperger, B. Buchmann, C. Hueglin, S. Szidat, Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra. Environ. Sci. Technol. 2008, 42, 214.
Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaktbvL&md5=73fd0010d2c33ba7085b3c985c81ccc3CAS | 18350899PubMed |

[40]  J. C. Chow, J. G. Watson, L.-W. A. Chen, W. P. Arnott, H. Moosmuller, Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ. Sci. Technol. 2004, 38, 4414.
Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslKrs7g%3D&md5=30c4fcbaf246d19bc84907997c1ecccfCAS | 15382872PubMed |

[41]  J. C. Chow, J. G. Watson, L. W. A. Chen, M. C. O. Chang, N. F. Robinson, D. Trimble, S. Kohl, The IMPROVE-A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J. Air Waste Manag. Assoc. 2007, 57, 1014.
The IMPROVE-A temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWqt7bP&md5=9d73a1640f80babf076db57f9afac5e6CAS | 17912920PubMed |

[42]  I. Atmoslytic, User Manual for the DRI Carbon Analyzer 2006 (Desert Research Institute: Reno, NV).

[43]  G. Engling, C. M. Carrico, S. M. Kreidenweis, J. L. Collett, D. E. Day, W. C. Malm, Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmos. Environ. 2006, 40, 299.
Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection.Crossref | GoogleScholarGoogle Scholar |

[44]  H. Bauer, M. Claeys, R. Vermeylen, E. Schueller, G. Weinke, A. Berger, H. Puxbaum, Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmos. Environ. 2008, 42, 588.
Arabitol and mannitol as tracers for the quantification of airborne fungal spores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltV2qtQ%3D%3D&md5=62632f0974068864bf1f687e899d6db4CAS |

[45]  J. A. Gillies, A. W. Gertler, J. C. Sagebiel, W. A. Dippel, On-road particulate matter (PM2.5 and PM10) emissions in the Sepulveda Tunnel, Los Angeles, California. Environ. Sci. Technol. 2001, 35, 1054.
On-road particulate matter (PM2.5 and PM10) emissions in the Sepulveda Tunnel, Los Angeles, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVymsL0%3D&md5=35907e29e1ddc39abd71c7714359879cCAS | 11347914PubMed |

[46]  H. A. Gray, G. R. Cass, J. J. Huntzicker, E. K. Heyerdahl, J. A. Rau, Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles. Environ. Sci. Technol. 1986, 20, 580.
Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhvFajtLw%3D&md5=5cbb76081c39aa6d29836fd6a061e333CAS | 19994954PubMed |

[47]  L. M. Hildemann, G. R. Markowski, G. R. Cass, Chemical composition of emissions from urban sources of fine organic aerosol. Environ. Sci. Technol. 1991, 25, 744.
Chemical composition of emissions from urban sources of fine organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXht1yit7s%3D&md5=1f17dfd0d2a5ef517a269c72a58c4de7CAS |

[48]  J. G. Watson, J. C. Chow, J. E. Houck, PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in northwestern Colorado during 1995. Chemosphere 2001, 43, 1141.
PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in northwestern Colorado during 1995.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislGgsLc%3D&md5=2c3aaa373f8bde90975a9019b6cb7c39CAS | 11368231PubMed |

[49]  J. G. Watson, J. C. Chow, Z. Q. Lu, E. M. Fujita, D. H. Lowenthal, D. R. Lawson, L. L. Ashbaugh, Chemical mass balance source apportionment of PM10 during the Southern California Air Quality Study. Aerosol Sci. Technol. 1994, 21, 1.
Chemical mass balance source apportionment of PM10 during the Southern California Air Quality Study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltFKgu78%3D&md5=72ceb584b9542749ff63903bb2c37771CAS |