Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

1H NMR-based metabolomic observation of a two-phased toxic mode of action in Eisenia fetida after sub-lethal phenanthrene exposure

Brian P. Lankadurai A , David M. Wolfe A , André J. Simpson A and Myrna J. Simpson A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.

B Corresponding author. Email: myrna.simpson@utoronto.ca

Environmental Chemistry 8(2) 105-114 https://doi.org/10.1071/EN10094
Submitted: 24 August 2010  Accepted: 2 December 2010   Published: 2 May 2011

Journal Compilation © CSIRO Publishing 2011 Open Access CC BY-NC-ND

Environmental context. Phenanthrene is a persistent soil contaminant, whose toxic mode of action in earthworms has not been fully examined. We adopt a metabolomics approach, using 1H nuclear magnetic resonance (NMR) spectroscopy, to measure the response of earthworms to sub-lethal phenanthrene exposure. The results indicate that NMR-based metabolomics may be used to monitor responses to sub-lethal levels of contaminants and to delineate their toxic mode of action.

Abstract. 1H NMR-based metabolomics was used to examine the response of the earthworm Eisenia fetida to sub-lethal phenanthrene exposure. E. fetida were exposed via contact tests to six sub-lethal (below the measured LC50 of 1.6 mg cm–2) concentrations of phenanthrene (0.8–0.025 mg cm–2) for 48 h. Multivariate statistical analysis of the 1H NMR spectra of earthworm tissue extracts revealed a two-phased mode of action (MOA). At exposures below 1/16th of the LC50, the MOA was characterised by a linear correlation between the metabolic response and exposure concentration. At exposures ≥1/16th of the LC50, the metabolic response to phenanthrene appeared to plateau, indicating a distinct change in the MOA. Further data analysis suggested that alanine, lysine, arginine, isoleucine, maltose, ATP and betaine may be potential indicators for sub-lethal phenanthrene exposure. Metabolite variation was also found to be proportional to the exposure concentration suggesting that NMR-based earthworm metabolomics is capable of elucidating concentration-dependent relationships in addition to elucidating the MOA of sub-lethal contaminant-exposure.

Additional keywords: concentration-dependence, contact tests, LC50, metabonomics.


References

[1]  J. G. Bundy, E. M. Lenz, N. J. Bailey, C. L. Gavaghan, C. Svendsen, D. Spurgeon, P. K. Hankard, D. Osborn, J. A. Weeks, S. A. Trauger, Metabonomic assessment of toxicity of 4-fluoroaniline, 3,5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): identification of new endogenous biomarkers. Environ. Toxicol. Chem. 2002, 21, 1966..
| 12206438PubMed |

[2]  M. J. Simpson, J. R. McKelvie, Environmental metabolomics: new insights into earthworm ecotoxicity and contaminant bioavailability in soil. Anal. Bioanal. Chem. 2009, 394, 137.
Environmental metabolomics: new insights into earthworm ecotoxicity and contaminant bioavailability in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWisb0%3D&md5=b57bc5aa80a551588927c245e903630bCAS | 19194697PubMed |

[3]  S. A. E. Brown, A. J. Simpson, M. J. Simpson, Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida. Environ. Toxicol. Chem. 2008, 27, 828.
Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGntLg%3D&md5=f8467651471cd45df8ab5ab4160d6142CAS | 18333692PubMed |

[4]  C. A. Edwards, P. J. Bohlen, The effects of toxic-chemicals on earthworms. Rev. Environ. Contam. Toxicol. 1992, 125, 23..

[5]  L. C. Fitzpatrick, R. Sassani, B. J. Venables, A. J. Goven, Comparative toxicity of polychlorinated-biphenyls to earthworms Eisenia foetida and Lumbricus terrestris. Environ. Pollut. 1992, 77, 65.
Comparative toxicity of polychlorinated-biphenyls to earthworms Eisenia foetida and Lumbricus terrestris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVaitLo%3D&md5=d0b0ccd388e0635384a0a4855289f267CAS | 15091979PubMed |

[6]  M. R. Viant, Recent developments in environmental metabolomics. Mol. Biosyst. 2008, 4, 980.
Recent developments in environmental metabolomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFeitrfK&md5=c3993a0cee1e75c6a46b549a3f163f1bCAS | 19082136PubMed |

[7]  M. Oldiges, S. Lutz, S. Pflug, K. Schroer, N. Stein, C. Wiendahl, Metabolomics: current state and evolving methodologies and tools. Appl. Microbiol. Biotechnol. 2007, 76, 495.
Metabolomics: current state and evolving methodologies and tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1ahsbs%3D&md5=df34d7a8117ff350a8b9f0d8abd438ddCAS | 17665194PubMed |

[8]  Y. Y. Mosleh, S. Paris-Palacios, M. Couderchet, G. Vernet, Acute and sublethal effects of two insecticides on earthworms (Lumbricus terrestris L.) under laboratory conditions. Environ. Toxicol. 2003, 18, 1.
Acute and sublethal effects of two insecticides on earthworms (Lumbricus terrestris L.) under laboratory conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFKjsLc%3D&md5=67f840669273a3a24eb9a5b6c050c319CAS | 12539138PubMed |

[9]  E. F. Neuhauser, C. A. Callahan, Growth and reproduction of the earthworm Eisenia fetida exposed to sublethal concentrations of organic-chemicals. Soil Biol. Biochem. 1990, 22, 175.
Growth and reproduction of the earthworm Eisenia fetida exposed to sublethal concentrations of organic-chemicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFegtL0%3D&md5=c9b3c7229eac85a21c88ff7d2931fc7fCAS |

[10]  D. R. Ekman, Q. Teng, D. L. Villeneuve, M. D. Kahl, K. M. Jensen, E. J. Durhan, G. T. Ankley, T. W. Collette, Investigating compensation and recovery of fathead minnow (Pimephales promelas) exposed to 17 alpha-ethynylestradiol with metabolite profiling. Environ. Sci. Technol. 2008, 42, 4188.
Investigating compensation and recovery of fathead minnow (Pimephales promelas) exposed to 17 alpha-ethynylestradiol with metabolite profiling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Sks7o%3D&md5=ad652146af4f861f9db0b30febc09dfdCAS | 18589986PubMed |

[11]  B. M. Beckwith-Hall, J. K. Nicholson, A. W. Nicholls, P. J. D. Foxall, J. C. Lindon, S. C. Connor, M. Abdi, J. Connelly, E. Holmes, Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins. Chem. Res. Toxicol. 1998, 11, 260.
Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVSiu7Y%3D&md5=5a11c1904758ede1c091bd76386f1b17CAS | 9548796PubMed |

[12]  S. A. E. Brown, A. J. Simpson, M. J. Simpson, 1H NMR metabolomics of earthworm responses to sub-lethal PAH exposure. Environ. Chem. 2009, 6, 432.
1H NMR metabolomics of earthworm responses to sub-lethal PAH exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSkurnK&md5=ce1e72442ee2dcc90157930d537ca8a4CAS |

[13]  J. G. Bundy, M. P. Davey, M. R. Viant, Environmental metabolomics: a critical review and future perspectives. Metabolomics 2009, 5, 3.
Environmental metabolomics: a critical review and future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSls7k%3D&md5=f8528d88bc47af243aadb4abbb08cdbbCAS |

[14]  J. G. Bundy, D. Osborn, J. M. Weeks, J. C. Lindon, J. K. Nicholson, An NMR-based metabonomic approach to the investigation of coelomic fluid biochemistry in earthworms under toxic stress. FEBS Lett. 2001, 500, 31.
An NMR-based metabonomic approach to the investigation of coelomic fluid biochemistry in earthworms under toxic stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVemu7w%3D&md5=d53370733042d10c6abdb9500697faebCAS | 11434921PubMed |

[15]  J. R. McKelvie, J. Yuk, Y. P. Xu, A. J. Simpson, M. J. Simpson, 1H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics 2009, 5, 84.
1H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSls7g%3D&md5=1688328b4ca9fcb0b33fd8ef8867b01bCAS |

[16]  O. A. H. Jones, D. J. Spurgeon, C. Svendsen, J. L. Griffin, A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere 2008, 71, 601.
A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVWjsbY%3D&md5=7445330843c7108859a9b535664969dfCAS | 17928029PubMed |

[17]  S. A. E. Brown, J. R. McKelvie, A. J. Simpson, M. J. Simpson, 1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil. Environ. Pollut. 2010, 158, 2117.
1H NMR metabolomics of earthworm exposure to sub-lethal concentrations of phenanthrene in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVent7w%3D&md5=040d4c79d9b40051a63f9b35826e7b24CAS | 20338676PubMed |

[18]  S. Lundstedt, P. Haglund, L. Oberg, Simultaneous extraction and fractionation of polycyclic aromatic hydrocarbons and their oxygenated derivatives in soil using selective pressurized liquid extraction. Anal. Chem. 2006, 78, 2993.
Simultaneous extraction and fractionation of polycyclic aromatic hydrocarbons and their oxygenated derivatives in soil using selective pressurized liquid extraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVels7g%3D&md5=d649d73c1bff64f02607a6d45d347530CAS | 16642985PubMed |

[19]  M. J. Smith, T. H. Flowers, H. J. Duncan, J. Alder, Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Pollut. 2006, 141, 519.
Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFGkt74%3D&md5=8ebbe7373b6db1ff074696fac6984352CAS | 16246476PubMed |

[20]  M. K. Chung, R. Hu, K. C. Cheung, M. H. Wong, Pollutants in Hong Kong soils: polycyclic aromatic hydrocarbons. Chemosphere 2007, 67, 464.
Pollutants in Hong Kong soils: polycyclic aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslKktg%3D%3D&md5=c7a557d7ebb4c074b53a470cffe29fa9CAS | 17109918PubMed |

[21]  C. Svendsen, D. J. Spurgeon, P. K. Hankard, J. M. Weeks, A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker? Ecotoxicol. Environ. Saf. 2004, 57, 20.
A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVSiu7g%3D&md5=b670defa639f48521c4261921ecf4ebeCAS | 14659363PubMed |

[22]  R. van der Oost, J. Beyer, N. P. E. Vermeulen, Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 2003, 13, 57.
Fish bioaccumulation and biomarkers in environmental risk assessment: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFeqsro%3D&md5=e8f487a8d9b9c22d87eb26c4e9f1dfd8CAS |

[23]  Earthworm acute toxicity tests, in OECD Guideline 207 1984 (Organisation for Economic Co-operation and Development: Paris).

[24]  M. L. Hannam, S. D. Bamber, T. S. Galloway, A. J. Moody, M. B. Jones, Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus. Chemosphere 2010, 78, 779.
Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtValtL0%3D&md5=3b014970e052beedfca553d5e77eb8cbCAS | 20074773PubMed |

[25]  C. M. Hurdzan, N. T. Basta, P. G. Hatcher, O. H. Tuovinen, Phenanthrene release from natural organic matter surrogates under simulated human gastrointestinal conditions. Ecotoxicol. Environ. Saf. 2008, 69, 525.
Phenanthrene release from natural organic matter surrogates under simulated human gastrointestinal conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVOitbs%3D&md5=b0500da9fb316623219bfb1ab7fd6470CAS | 17433439PubMed |

[26]  Trimmed Spearman–Karber (TSK) Program, Version 1.5 1991 (Ecological Monitoring Research Division, Environmental Monitoring Systems Laboratory, US Environmental Protection Agency: Cincinnati, OH).

[27]  M. A. Hamilton, R. C. Russo, R. V. Thurston, Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977, 11, 714.
Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksl2it7s%3D&md5=290149ce379b8a45c8a01abd3db87d9fCAS |

[28]  C. A. Edwards, J. E. Bater, The use of earthworms in environmental-management, in The 4th International Symposium on Earthworm Ecology 1990, pp. 1683–1689 (Pergamon-Elsevier Science Ltd: Avignon, France).

[29]  A. J. Simpson, S. A. Brown, N. M. R. Purge, Effective and easy solvent suppression. J. Magn. Reson. 2005, 175, 340.
Effective and easy solvent suppression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1ygsrY%3D&md5=67f12730c50ea4ae54303eca7e7a36cfCAS | 15964227PubMed |

[30]  J. G. Bundy, D. J. Spurgeon, C. Svendsen, P. K. Hankard, J. M. Weeks, D. Osborn, J. C. Lindon, J. K. Nicholson, Environmental metabonomics: Applying combination biomarker analysis in earthworms at a metal contaminated site. Ecotoxicology 2004, 13, 797.
Environmental metabonomics: Applying combination biomarker analysis in earthworms at a metal contaminated site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslyrs7o%3D&md5=95873eae73546df65733e9f724c0319dCAS | 15736850PubMed |

[31]  L. Eriksson, E. Johansson, N. Kettaneh-Wold, J. Trygg, C. Wikstrom, S. Wold, Multi- and Megavariate Data Analysis Part 1: Basic Principles and Applications 2006 (Umetrics AB: Umea, Sweden).

[32]  D. I. Broadhurst, D. B. Kell, Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2006, 2, 171.
Statistical strategies for avoiding false discoveries in metabolomics and related experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWktL4%3D&md5=4228914b3a43ed4f6839bdf27ee981d6CAS |

[33]  S. Wold, M. Sjostrom, L. Eriksson, PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109.
PLS-regression: a basic tool of chemometrics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotF2mtLw%3D&md5=3c29bb47eff6ccd96a20f683964223b9CAS |

[34]  S. Wold, J. Trygg, A. Berglund, H. Antti, Some recent developments in PLS model building. Chemometr. Intell. Lab. 2001, 58, 131.
Some recent developments in PLS model building.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotF2mtLo%3D&md5=abfe021b5246cd72dcd79278fd9fe9e8CAS |

[35]  S. Wold, L. Eriksson, Statistical validation of QSAR results, in Chemometrics Methods in Molecular Design (Ed. H. van de Waterbeemd) 1995, pp. 309–318 (VCH: Weinheim, Germany).

[36]  M. B. Brown, A. B. Forsythe, Robust Tests for Equality of Variances. J. Am. Stat. Assoc. 1974, 69, 364.
Robust Tests for Equality of Variances.Crossref | GoogleScholarGoogle Scholar |

[37]  A. F. B. Boroujerdi, M. I. Vizcaino, A. Meyers, E. C. Pollock, S. L. Huynh, T. B. Schock, P. J. Morris, D. W. Bearden, NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus. Environ. Sci. Technol. 2009, 43, 7658.
NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCqtb7J&md5=aa9d7b13c4af1b842e9a80df0c7a98e6CAS | 19921875PubMed |

[38]  D. R. Ekman, Q. N. Teng, D. L. Villeneuve, M. D. Kahl, K. M. Jensen, E. J. Durhan, G. T. Ankley, T. W. Collette, Profiling lipid metabolites yields unique information on sex- and time-dependent responses of fathead minnows (Pimephales promelas) exposed to 17 alpha-ethynylestradiol. Metabolomics 2009, 5, 22.
Profiling lipid metabolites yields unique information on sex- and time-dependent responses of fathead minnows (Pimephales promelas) exposed to 17 alpha-ethynylestradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSls7Y%3D&md5=c8efcf49af259f8012808abba5505f65CAS |

[39]  J. G. Bundy, H. C. Keun, J. K. Sidhu, D. J. Spurgeon, C. Svendsen, P. Kille, A. J. Morgan, Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environ. Sci. Technol. 2007, 41, 4458.
Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVKqs70%3D&md5=676a6197a402726b6f710004b7bef7f8CAS | 17626452PubMed |

[40]  W. Tuffnail, G. A. Mills, P. Cary, R. Greenwood, An environmental H-1 NMR metabolomic study of the exposure of the marine mussel Mytilus edulis to atrazine, lindane, hypoxia and starvation. Metabolomics 2009, 5, 33.
An environmental H-1 NMR metabolomic study of the exposure of the marine mussel Mytilus edulis to atrazine, lindane, hypoxia and starvation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSls7w%3D&md5=a82832ab67dc19ff63d6cf47a06a2146CAS |

[41]  N. S. El-Shenawy, R. Greenwood, I. M. Ab-Del-Nabi, Z. I. Nabil, Effect of atrazine and lindane on the scope for growth of marine mussels Mytilus edulis. Acta Zool. Sin. 2006, 52, 712..

[42]  P. H. Yancey, M. E. Clark, S. C. Hand, R. D. Bowlus, G. N. Somero, Living with water-stress – evolution of osmolyte systems. Science 1982, 217, 1214.
Living with water-stress – evolution of osmolyte systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsFyisbw%3D&md5=442ff2b660e5ba77fdc5051b8f40c7faCAS | 7112124PubMed |

[43]  S. A. S. Craig, Betaine in human nutrition. Am. J. Clin. Nutr. 2004, 80, 539..
| 15321791PubMed |

[44]  L. Eriksson, P. L. Andersson, E. Johansson, M. Tysklind, Megavariate analysis of environmental QSAR data. Part I – A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol. Divers. 2006, 10, 169.
Megavariate analysis of environmental QSAR data. Part I – A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFykt7o%3D&md5=13de0d6f1ca1b0ad92dd479293cfa9e8CAS | 16770514PubMed |

[45]  L. Eriksson, P. L. Andersson, E. Johansson, M. Tysklind, Megavariate analysis of environmental QSAR data. Part II – Investigating very complex problem formulations using hierarchical, non-linear and batch-wise extensions of PCA and PLS. Mol. Divers. 2006, 10, 187.
Megavariate analysis of environmental QSAR data. Part II – Investigating very complex problem formulations using hierarchical, non-linear and batch-wise extensions of PCA and PLS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFyrs7Y%3D&md5=8ff0ac9b445aa216af2fa5e68c1f8feeCAS | 16802062PubMed |

[46]  M. Henningsson, E. Sundbom, B. A. Armelius, P. Erdberg, PLS model building: a multivariate approach to personality test data. Scand. J. Psychol. 2001, 42, 399.
PLS model building: a multivariate approach to personality test data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FksVCksg%3D%3D&md5=8cf9a75aba98270fd214f4f001fc704eCAS | 11771809PubMed |

[47]  S. Carraro, S. Rezzi, F. Reniero, K. Heberger, G. Giordano, S. Zanconato, C. Guillou, E. Baraldi, Metabolomics applied to exhaled breath condensate in childhood asthma. Am. J. Resp. Crit. Care 2007, 175, 986.
Metabolomics applied to exhaled breath condensate in childhood asthma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFyqsLw%3D&md5=5241dd5d76d2702d4f4dead3810fc350CAS |

[48]  P. Geladi, B. R. Kowalski, Partial least-squares regression – a tutorial. Anal. Chim. Acta 1986, 185, 1.
Partial least-squares regression – a tutorial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtVahs7c%3D&md5=ecdde10a303a213efaba96f43297bd65CAS |

[49]  M. R. Viant, J. G. Bundy, C. A. Pincetich, J. S. de Ropp, R. S. Tjeerdema, NMR-derived developmental metabolic trajectories: an approach for visualizing the toxic actions of trichloroethylene during embryogenesis. Metabolomics 2005, 1, 149.
NMR-derived developmental metabolic trajectories: an approach for visualizing the toxic actions of trichloroethylene during embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SmsrjE&md5=1a48125c3ed554b0fc8b1e243c54947dCAS |

[50]  O. Beckonert, H. C. Keun, T. M. D. Ebbels, J. G. Bundy, E. Holmes, J. C. Lindon, J. K. Nicholson, Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692.
Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSlsr3E&md5=204325afd210fb611b89aad5cd844184CAS | 18007604PubMed |

[51]  G. Balcerowska, R. Siuda, H. Czarnik-Matusewicz, Orthogonal signal correction to PLS modelling in application to spectral data. Acta Agrophysica 2005, 6, 7..

[52]  M. Saint-Denis, J. F. Narbonne, C. Arnaud, E. Thybaud, D. Ribera, Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effects of benzo(a)pyrene. Soil Biol. Biochem. 1999, 31, 1837.
Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: effects of benzo(a)pyrene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslGjtLs%3D&md5=b3fde7c598787852b3aab0d06ca1471bCAS |

[53]  W. W. Zhang, Y. F. Y. F. Song, P. P. Gong, T. H. T. H. Sun, Q. X. Zhou, M. M. Liu, Earthworm cytochrome P450 determination and application as a biomarker for diagnosing PAH exposure. J. Environ. Monit. 2006, 8, 963.
Earthworm cytochrome P450 determination and application as a biomarker for diagnosing PAH exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFKlt7Y%3D&md5=b573a277fda5fa52daf2a21687de8587CAS | 16951757PubMed |

[54]  R. K. Achazi, C. Flenner, D. R. Livingstone, L. D. Peters, K. Schaub, E. Scheiwe, Cytochrome P450 and dependent activities in unexposed and PAH-exposed terrestrial annelids. Comp. Biochem. Phys. C 1998, 121, 339..

[55]  P. J. Brown, S. M. Long, D. J. Spurgeon, C. Svendsen, P. K. Hankard, Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon. Chemosphere 2004, 57, 1675.
Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1arsrg%3D&md5=d5fa0315324825ee1766746b27f1161dCAS | 15519413PubMed |

[56]  J. J. Whyte, R. E. Jung, C. J. Schmitt, D. E. Tillitt, Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit. Rev. Toxicol. 2000, 30, 347.
Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVWjtrg%3D&md5=bdb7e906e747234f311a27928449aefcCAS | 10955715PubMed |

[57]  R. F. Lee, Annelid cytochrome P-450. Comp. Biochem. Phys. C 1998, 121, 173..

[58]  E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel, A. Bairoch, Protein identification and analysis tools on the ExPASy server, in The Proteomics Protocols Handbook (Ed. J. M. Walker) 2005, pp. 571–607 (Humana Press: Totowa, NJ).