Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Gaseous mercury in coastal urban areas

Anne L. Soerensen A D , Henrik Skov A , Matthew S. Johnson B and Marianne Glasius C
+ Author Affiliations
- Author Affiliations

A National Environmental Research Institute, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.

B Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.

C Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark.

D Corresponding author. Email: anls@dmu.dk

Environmental Chemistry 7(6) 537-547 https://doi.org/10.1071/EN10088
Submitted: 6 August 2010  Accepted: 12 October 2010   Published: 21 December 2010

Environmental context. Mercury is a neurotoxin that bioaccumulates in the aquatic food web. Atmospheric emissions from urban areas close to the coast could cause increased local mercury deposition to the ocean. Our study adds important new data to the current limited knowledge on atmospheric mercury emissions and dynamics in coastal urban areas.

Abstract. Approximately 50% of primary atmospheric mercury emissions are anthropogenic, resulting from e.g. emission hotspots in urban areas. Emissions from urban areas close to the coast are of interest because they could increase deposition loads to nearby coastal waters as well as contribute to long range transport of mercury. We present results from measurements of gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) in 15 coastal cities and their surrounding marine boundary layer (MBL). An increase of 15–90% in GEM concentration in coastal urban areas was observed compared with the remote MBL. Strong RGM enhancements were only found in two cities. In urban areas with statistically significant GEM/CO enhancement ratios, slopes between 0.0020 and 0.0087 ng m–3 ppb–1 were observed, which is consistent with other observations of anthropogenic enhancement. The emission ratios were used to estimate GEM emissions from the areas. A closer examination of data from Sydney (Australia), the coast of Chile, and Valparaiso region (Chile) in the southern hemisphere, is presented.

Additional keywords: emissions, gaseous elemental mercury, GEM/CO ratios, reactive gaseous mercury.


References

[1]  R. P. Mason, W. F. Fitzgerald, The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 1897.
The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFamsr8%3D&md5=44a5092cc1af475c46329472a320bb38CAS |

[2]  E. M. Sunderland, D. P. Krabbenhoft, J. W. Moreau, S. A. Strode, W. M. Landing, Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Global Biogeochem. Cycles 2009, 23, GB2010.
Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models.Crossref | GoogleScholarGoogle Scholar |

[3]  D. Mergler, H. A. Anderson, L. H. M. Chan, K. R. Mahaffey, M. Murray, M. Sakamoto, A. H. Stern, Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 2007, 36, 3.
Methylmercury exposure and health effects in humans: a worldwide concern.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFSrsrw%3D&md5=3009e3df7ff636f402661b2dc4c08d18CAS | 17408186PubMed |

[4]  A. M. Scheuhammer, M. W. Meyer, M. B. Sandheinrich, M. W. Murray, Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 2007, 36, 12.
Effects of environmental methylmercury on the health of wild birds, mammals, and fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFSrsr0%3D&md5=d964c9ca54a5ada7f406f50b49492871CAS | 17408187PubMed |

[5]  R. P. Mason, G. R. Sheu, Role of the ocean in the global mercury cycle. Global Biogeochem. Cycles 2002, 16, 1093.
Role of the ocean in the global mercury cycle.Crossref | GoogleScholarGoogle Scholar |

[6]  J. M. Pacyna, J. Munthe, S. Wilson, Part A: global emissions of mercury to the atmosphere, in Technical Background Report to the Global Atmospheric Assessment 2008, pp. 3–63 (Arctic Monitoring and Assessment Programme; and UNEP Chemicals Branch). Available at http://www.chem.unep.ch/mercury/Atmospheric_Emissions/Technical_background_report.pdf [Verified 3 December 2010].

[7]  R. Ebinghaus, C. Banic, S. Beauchamp, D. Jaffe, H. H. Kock, N. Pirrone, L. Poissant, F. Sprovieri, P. Weiss-Penzias, Spatial coverage and temporal trends of landbased atmospheric mercury measurements in the northern and southern hemispheres, in Mercury Fate and Transport in the Global Atmosphere: Measurements, Models and Policy Implications (Eds N. Pirrone, R. Mason) 2008, pp. 168–219 (Springer: New York).

[8]  S. Lindberg, R. Bullock, R. Ebinghaus, D. Engstrom, X. B. Feng, W. Fitzgerald, N. Pirrone, E. Prestbo, C. Seigneur, A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 2007, 36, 19.
A synthesis of progress and uncertainties in attributing the sources of mercury in deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFSrsro%3D&md5=4e07335b523cc059fb923078846b0691CAS | 17408188PubMed |

[9]  H. Skov, S. B. Brooks, M. E. Goodsite, S. E. Lindberg, T. P. Meyers, M. S. Landis, M. R. B. Larsen, B. Jensen, G. McConville, J. Christensen, Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmos. Environ. 2006, 40, 5452.
Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1GksLY%3D&md5=73e9336bf25bc1cc5d173d419d56c06aCAS |

[10]  A. L. Soerensen, H. Skov, D. J. Jacob, M. S. Johnson, B. T. Soerensen, Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer. Environ. Sci. Technol. 2010, 44, 7425.
Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWru7%2FI&md5=af6f63a12cab9afc710885206f3123a3CAS | 20822101PubMed |

[11]  E. G. Malcolm, G. J. Keeler, M. S. Landis, The effects of the coastal environment on the atmospheric mercury cycle. J. Geophys. Res. A 2003, 108, 4357.
The effects of the coastal environment on the atmospheric mercury cycle.Crossref | GoogleScholarGoogle Scholar |

[12]  M. M. Lynam, G. J. Keeler, Automated speciated mercury measurements in Michigan. Environ. Sci. Technol. 2005, 39, 9253.
Automated speciated mercury measurements in Michigan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKrt77L&md5=6ff8bc8ae0de42fe7232249f9178f7a0CAS | 16382950PubMed |

[13]  A. P. Rutter, J. J. Schauer, G. C. Lough, D. C. Snyder, C. J. Kolb, S. Von Klooster, T. Rudolf, H. Manolopoulos, M. L. Olson, A comparison of speciated atmospheric mercury at an urban center and an upwind rural location. J. Environ. Monit. 2008, 10, 102..
A comparison of speciated atmospheric mercury at an urban center and an upwind rural location.Crossref | GoogleScholarGoogle Scholar | 18175023PubMed |

[14]  M. S. Landis, A. F. Vette, G. J. Keeler, Atmospheric mercury in the Lake Michigan basin: influence of the Chicago/Gary urban area. Environ. Sci. Technol. 2002, 36, 4508.
Atmospheric mercury in the Lake Michigan basin: influence of the Chicago/Gary urban area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1SksrY%3D&md5=bcfb101539fd9152d2f7ac016545299eCAS | 12433158PubMed |

[15]  H. Chen, X. S. Yang, C. Perkins, Trend and variability of total gaseous mercury (TGM) in the state of Connecticut, USA during 1997–1999. Water Air Soil Pollut. 2004, 151, 103.
Trend and variability of total gaseous mercury (TGM) in the state of Connecticut, USA during 1997–1999.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSjs7%2FN&md5=7175540b3646551a1183af1fb5944b68CAS |

[16]  X. J. Song, I. Cheng, J. Lu, Annual atmospheric mercury species in downtown Toronto, Canada. J. Environ. Monit. 2009, 11, 660.
Annual atmospheric mercury species in downtown Toronto, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFShs74%3D&md5=d0aa03a588fe2c6a03755be85111bbe9CAS | 19280045PubMed |

[17]  A. H. Fostier, P. A. M. Michelazzo, Gaseous and particulate atmospheric mercury concentrations in the Campinas Metropolitan Region (Sao Paulo State, Brazil). J. Braz. Chem. Soc. 2006, 17, 886.
Gaseous and particulate atmospheric mercury concentrations in the Campinas Metropolitan Region (Sao Paulo State, Brazil).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVOqurc%3D&md5=3a626be4545870311491a33aa67b54a9CAS |

[18]  F. Laurier, R. Mason, Mercury concentration and speciation in the coastal and open ocean boundary layer. J. Geophys. Res. A 2007, 112, D06302.
Mercury concentration and speciation in the coastal and open ocean boundary layer.Crossref | GoogleScholarGoogle Scholar |

[19]  P. Weiss-Penzias, D. A. Jaffe, A. McClintick, E. M. Prestbo, M. S. Landis, Gaseous elemental mercury in the marine boundary layer: evidence for rapid removal in anthropogenic pollution. Environ. Sci. Technol. 2003, 37, 3755.
Gaseous elemental mercury in the marine boundary layer: evidence for rapid removal in anthropogenic pollution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslegurg%3D&md5=4f632d7a339d08d3c22ec0504fd6deddCAS | 12967093PubMed |

[20]  M. Engle, M. Tate, D. Krabbenhoft, A. Kolker, M. Olson, E. Edgerton, J. DeWild, A. McPherson, Characterization and cycling of atmospheric mercury along the central US Gulf Coast. Appl. Geochem. 2008, 23, 419.
Characterization and cycling of atmospheric mercury along the central US Gulf Coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVChsLY%3D&md5=6afec317d52f03ce9bc3e340eac7cc94CAS |

[21]  E. G. Brunke, C. Labuschagne, R. Ebinghaus, H. H. Kock, F. Slemr, Gaseous elemental mercury depletion events observed at Cape Point during 2007–2008. Atmos. Chem. Phys. 2010, 10, 1121.
Gaseous elemental mercury depletion events observed at Cape Point during 2007–2008.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2rtb8%3D&md5=7bc5dba4409a78488095473dfc5a8eafCAS |

[22]  E. G. Pacyna, J. M. Pacyna, F. Steenhuisen, S. Wilson, Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 2006, 40, 4048.
Global anthropogenic mercury emission inventory for 2000.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFartLY%3D&md5=30c740daf6dc36bae456484fc0829908CAS |

[23]  P. Weiss-Penzias, D. A. Jaffe, P. Swartzendruber, J. B. Dennison, D. Chand, W. Hafner, E. Prestbo, Observations of Asian air pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004. J. Geophys. Res. A 2006, 111, D10304.
Observations of Asian air pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004.Crossref | GoogleScholarGoogle Scholar |

[24]  P. Weiss-Penzias, D. Jaffe, P. Swartzendruber, W. Hafner, D. Chand, E. Prestbo, Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory. Atmos. Environ. 2007, 41, 4366.
Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslWksro%3D&md5=91a0cf911a66dfd7ded753508dc41e89CAS |

[25]  F. Slemr, R. Ebinghaus, P. G. Simmonds, S. G. Jennings, European emissions of mercury derived from long-term observations at Mace Head, on the western Irish coast. Atmos. Environ. 2006, 40, 6966.
European emissions of mercury derived from long-term observations at Mace Head, on the western Irish coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVyis7c%3D&md5=bd14e770d37e6227ab6519a7829b8f31CAS |

[26]  D. Jaffe, E. Prestbo, P. Swartzendruber, P. Weiss-Penzias, S. Kato, A. Takami, S. Hatakeyama, Y. Kajii, Export of atmospheric mercury from Asia. Atmos. Environ. 2005, 39, 3029.
Export of atmospheric mercury from Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWqsrg%3D&md5=9642c9ed537432ec65db636f7135c572CAS |

[27]  L. F. Radke, H. R. Friedli, B. G. Heikes, Atmospheric mercury over the NE Pacific during spring 2002: gradients, residence time, upper troposphere lower stratosphere loss, and long-range transport. J. Geophys. Res. A 2007, 112, D19305.
Atmospheric mercury over the NE Pacific during spring 2002: gradients, residence time, upper troposphere lower stratosphere loss, and long-range transport.Crossref | GoogleScholarGoogle Scholar |

[28]  R. Talbot, H. Mao, E. Scheuer, J. Dibb, M. Avery, E. Browell, G. Sachse, S. Vay, D. Blake, G. Huey, H. Fuelberg, Factors influencing the large-scale distribution of Hg degrees in the Mexico City area and over the North Pacific. Atmos. Chem. Phys. 2008, 8, 2103.
Factors influencing the large-scale distribution of Hg degrees in the Mexico City area and over the North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVSksLs%3D&md5=a58b875452001dc44dbefe58483f93e2CAS |

[29]  H. R. Friedli, A. F. Arellano, S. Cinnirella, N. Pirrone, Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environ. Sci. Technol. 2009, 43, 3507.
Initial estimates of mercury emissions to the atmosphere from global biomass burning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFagtrk%3D&md5=230cce58367a4c47d643e95a11af8312CAS | 19544847PubMed |

[30]  H. Mao, R. W. Talbot, J. M. Sigler, B. C. Sive, J. D. Hegarty, Seasonal and diurnal variations of Hg degrees over New England. Atmos. Chem. Phys. 2008, 8, 1403.
Seasonal and diurnal variations of Hg degrees over New England.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFOjs7k%3D&md5=f13837792297b3c5ad9b266e52a1a109CAS |

[31]  D. Obrist, A. G. Hallar, I. Mccubbin, B. B. Stephens, T. Rahn, Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky Mountains: evidence for long-range transport from Asia, boundary layer contributions, and plant mercury uptake. Atmos. Environ. 2008, 42, 7579.
Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky Mountains: evidence for long-range transport from Asia, boundary layer contributions, and plant mercury uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GrsLzO&md5=48938c1e431953d502417ab2b2d2a621CAS |

[32]  H. R. Friedli, L. F. Radke, R. Prescott, P. Li, J. H. Woo, G. R. Carmichael, Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: measurements, distributions, sources, and implications. J. Geophys. Res. A 2004, 109, D19S25.
Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: measurements, distributions, sources, and implications.Crossref | GoogleScholarGoogle Scholar |

[33]  J. M. Sigler, H. Mao, R. Talbot, Gaseous elemental and reactive mercury in southern New Hampshire. Atmos. Chem. Phys. 2009, 9, 1929.
Gaseous elemental and reactive mercury in southern New Hampshire.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1yisr8%3D&md5=f4fb06ed53c216416e9a70df26e598bcCAS |

[34]  M. E. R. Gustafsson, L. G. Franzen, Inland transport of marine aerosols in southern Sweden. Atmos. Environ. 2000, 34, 313..
Inland transport of marine aerosols in southern Sweden.Crossref | GoogleScholarGoogle Scholar |

[35]  M. Kellerhals, S. Beauchamp, W. Belzer, P. Blanchard, F. Froude, B. Harvey, K. McDonald, M. Pilote, L. Poissant, K. Puckett, B. Schroeder, A. Steffen, R. Tordon, Temporal and spatial variability of total gaseous mercury in Canada: results from the Canadian Atmospheric Mercury Measurement Network (CAMNet). Atmos. Environ. 2003, 37, 1003.
Temporal and spatial variability of total gaseous mercury in Canada: results from the Canadian Atmospheric Mercury Measurement Network (CAMNet).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Wgurk%3D&md5=8b2cf7b14eb7a8f85c314e76ea6fa35dCAS |

[36]  R. Vogt, P. J. Crutzen, R. Sander, A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 1996, 383, 327.
A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFaisbg%3D&md5=7e11107f0d8d29e9c30206d97ee54b42CAS |

[37]  R. Sander, W. C. Keene, A. A. P. Pszenny, R. Arimoto, G. P. Ayers, E. Baboukas, J. M. Cainey, P. J. Crutzen, R. A. Duce, G. Honninger, B. J. Huebert, W. Maenhaut, N. Mihalopoulos, V. C. Turekian, R. Van Dingenen, Inorganic bromine in the marine boundary layer: a critical review. Atmos. Chem. Phys. 2003, 3, 1301.
Inorganic bromine in the marine boundary layer: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVarurc%3D&md5=12f94a76373bb6c87991a2729796e2dbCAS |

[38]  J. M. Pacyna, S. Wilson, F. Steenhuisen, Spatially Distributed Inventories of Global Anthropogenic Emissions of Mercury to the Atmosphere 2005 (Norwegian Institute for Air Research (NILU); the Arctic Monitoring and Assessment Programme (AMAP); and the Arctic Center, University of Groningen (RuG)). Available at www.amap.no/Resources/HgEmissions/ [Verified 3 December 2010].

[39]  P. F. Nelson, Atmospheric emissions of mercury from Australian point sources. Atmos. Environ. 2007, 41, 1717.
Atmospheric emissions of mercury from Australian point sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslCitg%3D%3D&md5=7e5f19ef226a98f87393a4303ff7f644CAS |

[40]  D. K. Davies, S. Ilavajhala, M. M. Wong, C. O. Justice, Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Trans. Geosci. Rem. Sens. 2009, 47, 3298.
Fire information for resource management system: archiving and distributing MODIS active fire data.Crossref | GoogleScholarGoogle Scholar |

[41]  R. P. Draxler, G. D. Rolph, HYSPLIT – Hybrid Single Particle Lagrangian Integrated Trajectory Model 2003 (NOAA Air Resources Laboratory: Silver Spring, MD). Available at http://www.arl.noaa.gov/ready/hysplit4.html [Verified 3 December 2010].

[42]  I. De Gregori, M. G. Lobos, H. Pinochet, Selenium and its redox speciation in rainwater from sites of Valparaíso region in Chile, impacted by mining activities of copper ores. Water Res. 2002, 36, 115.
Selenium and its redox speciation in rainwater from sites of Valparaíso region in Chile, impacted by mining activities of copper ores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1KhtbY%3D&md5=919850801cf869706557395fd29b3517CAS | 11766786PubMed |

[43]  H. Palma-Fleming, C. Cornejo, M. González, V. Pérez, M. González, E. Gutierrez, J. L. Sericano, M. Seeger, Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in coastal environments of Valvidia and Valparaíso, Chile. J. Chil. Chem. Soc. 2008, 53, 1533.
Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in coastal environments of Valvidia and Valparaíso, Chile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVajt7w%3D&md5=be973fde5210fca7d8bf9ba232e32f20CAS |

[44]  H. Skov, J. H. Christensen, M. E. Goodsite, N. Z. Heidam, B. Jensen, P. Wahlin, G. Geernaert, Fate of elemental mercury in the arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the arctic. Environ. Sci. Technol. 2004, 38, 2373.
Fate of elemental mercury in the arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVyms78%3D&md5=2a85cbcec1670731e645bb9f858fbd51CAS | 15116843PubMed |