Volatile organic compounds sources in Paris in spring 2007. Part II: source apportionment using positive matrix factorisation
Cécile Gaimoz A , Stéphane Sauvage B C , Valérie Gros A F , Frank Herrmann D , Jonathan Williams D , Nadine Locoge B C , Olivier Perrussel E , Bernard Bonsang A , Odile d’Argouges A , Roland Sarda-Estève A and Jean Sciare AA Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Unité Mixte CEA-CNRS-UVSQ (Commissariat à l’Energie Atomique, Centre Nationale de la Recherche Scientifique, Université de Versailles Saint-Quentin-en-Yvelines), F-91198 Gif-sur-Yvette, France.
B Université de Lille Nord de France, F-59000 Lille, France.
C Ecole des Mines Douai, Département Chimie Environnement, F-59508 Douai, France.
D Max Planck Institute for Chemistry, Air Chemistry Department, D-55128 Mainz, Germany.
E Agence de surveillance de la qualité de l’air (AIRPARIF), F-75004 Paris, France.
F Corresponding author. Email: valerie.gros@lsce.ipsl.fr
Environmental Chemistry 8(1) 91-103 https://doi.org/10.1071/EN10067
Submitted: 24 June 2010 Accepted: 26 November 2010 Published: 28 February 2011
Environmental context. Volatile organic compounds are key compounds in atmospheric chemistry as precursors of ozone and secondary organic aerosols. To determine their impact at a megacity scale, a first important step is to characterise their sources. We present an estimate of volatile organic compound sources in Paris based on a combination of measurements and model results. The data suggest that the current emission inventory strongly overestimates the volatile organic compounds emitted from solvent industries, and thus needs to be corrected.
Abstract. A positive matrix factorisation model has been used for the determination of volatile organic compound (VOC) source contributions in Paris during an intensive campaign (May–June 2007). The major sources were traffic-related emissions (vehicle exhaust, 22% of the total mixing ratio of the measured VOCs, and fuel evaporation, 17%), with the remaining emissions from remote industrial sources (35%), natural gas and background (13%), local sources (7%), biogenic and fuel evaporation (5%) and wood-burning (2%). It was noted that the remote industrial contribution was highly dependent on the air-mass origin. During the period of oceanic influences (when only local and regional pollution was observed), this source made a relatively low contribution (<15%), whereas the source contribution linked to traffic was high (54%). During the period of continental influences (when additional continental pollution was observed), remote industrial sources played a dominant role, contributing up to 50% of measured VOCs. Finally, the positive matrix factorisation results obtained during the oceanic air mass-influenced period were compared with the local emission inventory. This comparison suggests that the VOC emission from solvent industries might be overestimated in the inventory, consistent with findings in other European cities.
Additional keywords: emission inventory, Ile de France, PMF, urban area, VOC.
References
[1] J. Williams, Organic trace gases: an overview. Environ. Chem. 2004, 1, 125.| Organic trace gases: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2gtQ%3D%3D&md5=db8dea4613addf3cece79503cbe41104CAS |
[2] Air Quality Guidelines for Europe, 2nd edn, Publication No. 91 2000 (World Health Organisation, Regional Office for Europe: Copenhagen).
[3] Friedrich R., Obermeier A., Anthropogenic emissions of volatile organic compounds, in Reactive Hydrocarbons in the Atmosphere (Ed. C. N. Hewiit) 1999, pp. 1–39 (Academic Press: San Diego, CA).
[4] The European environment – State and Outlook, Report 1/2005 2005 (The European Environment Agency, Office for Official Publications of the European Communities). Available at http://www.eea.europa.eu/publications/state_of_environment_report_2005_1 [Verified 13 January 2011].
[5] Wilks D. S., Statistical Methods in the Atmospheric Sciences 1995, p. 465 (Library of Cataloging-in-publication, Academic Press: San Diego, CA).
[6] R. C. Henry, Multivariate receptor modelling by N-dimensional edge detection. Chemom. Intell. Lab. Syst. 2003, 65, 179.
| Multivariate receptor modelling by N-dimensional edge detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlykug%3D%3D&md5=1fab8f6f43d9e2158bab14e5fbdde787CAS |
[7] J. G. Watson, J. C. Chow, E. M. Fujita, Review of volatile organic compounds source apportionment by chemical mass balance. Atmos. Environ. 2001, 35, 1567.
| Review of volatile organic compounds source apportionment by chemical mass balance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1yqtr8%3D&md5=3202f920a8c6aa718ff79d1b9cc95495CAS |
[8] P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111.
| Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values.Crossref | GoogleScholarGoogle Scholar |
[9] B. Buzcu, M. P. Fraser, Source identification and apportionment of volatile organic compounds in Houston, TX. Atmos. Environ. 2006, 40, 2385.
| Source identification and apportionment of volatile organic compounds in Houston, TX.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1agt7k%3D&md5=f577b14202c9c9bd37311649a4ad48a1CAS |
[10] H. Jorquera, B. Rappenglück, Receptor modeling of ambient VOC at Santiago, Chile. Atmos. Environ. 2004, 38, 4243.
| Receptor modeling of ambient VOC at Santiago, Chile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyhsLs%3D&md5=f0a755ef50fc1a045c9f23f0940a1ad7CAS |
[11] Y. Song, M. Shao, Y. Liu, S. Lu, W. Kuster, P. Goldan, S. Xie, Source apportionment of ambient volatile organic compounds in Beijing. Environ. Sci. Technol. 2007, 41, 4348.
| Source apportionment of ambient volatile organic compounds in Beijing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1ylt7c%3D&md5=8cc10260257c9298cde652ceb706235cCAS | 17626435PubMed |
[12] A. Niedojadlo, K. H. Becker, R. Kurtenbach, P. Wiesen, The contribution of traffic and solvent use to the total NMVOC emission in a German city derived from measurements and CMB modelling. Atmos. Environ. 2007, 41, 7108.
| The contribution of traffic and solvent use to the total NMVOC emission in a German city derived from measurements and CMB modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2qurbN&md5=88457a342690c43f03886a56c7048e95CAS |
[13] V. A. Lanz, C. Hueglin, B. Buchmann, M. Hill, R. Locher, J. Staehelin, S. Reimann, Receptor modeling of C2–C7 hydrocarbon sources at an urban background site in Zurich, Switzerland: changes between 1993–1994 and 2005–2006. Atmos. Chem. Phys. 2008, 8, 2313.
| Receptor modeling of C2–C7 hydrocarbon sources at an urban background site in Zurich, Switzerland: changes between 1993–1994 and 2005–2006.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKksbc%3D&md5=8c74a459eeea8ee180c645f59360e9ffCAS |
[14] V. Gros, C. Gaimoz, F. Herrmann, T. Custer, J. Williams, B. Bonsang, S. Sauvage, N. Locoge, O. Perrussel, O. d’Argouges, R. Sarda-Estève, J. Sciare, Volatile organic compounds sources in Paris in spring 2007. Part I: qualitative analysis. Environ. Chem. 2011, 8, 74.
| Volatile organic compounds sources in Paris in spring 2007. Part I: qualitative analysis.Crossref | GoogleScholarGoogle Scholar |
[15] Hopke P. K., A guide to positive matrix factorization, in EPA Workshop on UNMIX and PMF As Applied to PM2.5, Research Triangle Park, NC, 14–16 February 2000 (Ed. R. D. Willis) 2000 (US Environmental Protection Agency, Office of Air Quality Planning and Standards). Available at http://www.epa.gov/ttnamti1/files/ambient/pm25/workshop/laymen.pdf [Verified 13 January 2011].
[16] S. G. Brown, A. Frankel, H. R. Hafner, Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmos. Environ. 2007, 41, 227.
| Source apportionment of VOCs in the Los Angeles area using positive matrix factorization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlajsrzP&md5=aa01bed35a1f8edae59de46d7dd48c10CAS |
[17] Paatero P., User’s Guide for Positive Matrix Factorization Programs PMF2 and PMF3, Part 1 2007 (University of Helsinki: Helsinki, Finland).
[18] E. Kim, S. G. Brown, H. R. Hafner, P. K. Hopke, Characterization of non-methane volatile organic compounds sources in Houston during 2001 using positive matrix factorization. Atmos. Environ. 2005, 39, 5934.
| Characterization of non-methane volatile organic compounds sources in Houston during 2001 using positive matrix factorization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVShur7E&md5=d59f69ebfc8e33a267161c6804971848CAS |
[19] Y. Xie, C. M. Berkowitz, The use of positive matrix factorization with conditional probability functions in air quality studies: an application to hydrocarbon emissions in Houston, Texas. Atmos. Environ. 2006, 40, 3070.
| The use of positive matrix factorization with conditional probability functions in air quality studies: an application to hydrocarbon emissions in Houston, Texas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVajs70%3D&md5=4121ec2e6b20bcbd353203fe6e88728aCAS |
[20] Passant N. R., Speciation of UK emissions of non-methane volatile organic compounds. Report No. AEAT/ENV/R/0545, Issue 1 2002 (AEA Technology: Abingdon, UK). Available at http://www.airquality.co.uk/reports/empire/AEAT_ENV_0545_final_v2.pdf [Verified 13 January 2011].
[21] C. Badol, N. Locoge, T. Léonardis, J.-C. Galloo, Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions. Part I: study area description, data set acquisition and qualitative data analysis of the data set. Sci. Total Environ. 2008, 389, 441.
| Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions. Part I: study area description, data set acquisition and qualitative data analysis of the data set.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqurrJ&md5=fc5bbb7fa9b372600d79d564d1b70efbCAS | 17956761PubMed |
[22] A. Borbon, N. Locoge, M. Veillerot, J.-C. Galloo, R. Guillermo, Characterization of NMHCs in a French urban atmosphere: overview of the main sources. Sci. Total Environ. 2002, 292, 177.
| Characterization of NMHCs in a French urban atmosphere: overview of the main sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFOks7k%3D&md5=6c0a7163ba8e3cb3d728721060dffad3CAS | 12146518PubMed |
[23] C. S. Christensen, H. Skov, F. Palmgren, C5–C8 non-methane hydrocarbon measurements in Copenhagen: concentrations, sources, and emission estimates. Sci. Total Environ. 1999, 236, 163.
| C5–C8 non-methane hydrocarbon measurements in Copenhagen: concentrations, sources, and emission estimates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1Wru74%3D&md5=15048ebd831e27cc73d1cb8eba52f2beCAS |
[24] R. G. Derwent, D. R. Middleton, R. A. Field, M. E. Goldstone, J. N. Lester, R. Perry, Analysis and interpretation of air quality data from an urban roadside location in central London over the period from July 1991 to July 1992. Atmos. Environ. 1995, 29, 923.
| Analysis and interpretation of air quality data from an urban roadside location in central London over the period from July 1991 to July 1992.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtVKnu7w%3D&md5=dca50e2dc97e55a9254deb2c302a0fb2CAS |
[25] C. Liu, Z. Xu, Y. Du, H. Guo, Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun, the north-east of China. Atmos. Environ. 2000, 34, 4459.
| Analyses of volatile organic compounds concentrations and variation trends in the air of Changchun, the north-east of China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVOkur8%3D&md5=dfec58c0b5fb18bd866f0d313ec9da77CAS |
[26] J. G. Slowik, A. Vlasenko, M. McGuire, G. J. Evans, J. P. D. Abbatt, Simultaneous factor analysis of organic particle and gas mass spectra: AMS and PTR-MS measurements at an urban site. Atmos. Chem. Phys. 2010, 10, 1969.
| Simultaneous factor analysis of organic particle and gas mass spectra: AMS and PTR-MS measurements at an urban site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2qsLs%3D&md5=b28ce1df02b9f1e790c15c76dd815d6bCAS |
[27] D. J. Jacob, B. D. Field, E. M. Jin, I. Bey, Q. Li, J. A. Logan, R. M. Yantosca, Atmospheric budget of acetone. J. Geophys. Res. 2002, 107, 4100.
| Atmospheric budget of acetone.Crossref | GoogleScholarGoogle Scholar |
[28] D. J. Jacob, B. D. Field, Q. B. Li, D. R. Blake, J. de Gouw, C. Warneke, A. Hansel, A. Whisthaler, H. B. Singh, A. Guenther, Global budget of methanol: constraints from atmospheric observations. J. Geophys. Res. 2005, 110, D08303.
| Global budget of methanol: constraints from atmospheric observations.Crossref | GoogleScholarGoogle Scholar |
[29] I. Filella, J. Penuelas, Daily, weekly, and seasonal time courses of VOC concentrations in a semi-urban area near Barcelona. Atmos. Environ. 2006, 40, 7752.
| Daily, weekly, and seasonal time courses of VOC concentrations in a semi-urban area near Barcelona.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WmtbjL&md5=ceaf73c44986ca31ea915641ba409a60CAS |
[30] G. Legreid, J. B. Lööv, J. Staehelin, C. Hueglin, M. Hill, B. Buchmann, A. S. H. Prevot, S. Reimann, Oxygenated volatile organic compounds (OVOCs) at an urban background site in Zürich (Europe): seasonal variation and source allocation. Atmos. Environ. 2007, 41, 8409.
| Oxygenated volatile organic compounds (OVOCs) at an urban background site in Zürich (Europe): seasonal variation and source allocation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOjtLrL&md5=947c00a8f0b645c11f73669f2ba6a615CAS |
[31] R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063.
| Atmospheric chemistry of VOCs and NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlaju70%3D&md5=66824988140aedda7374a46ea575eedeCAS |
[32] R. Holzinger, J. Williams, G. Salisbury, T. Klupfel, M. de Reus, M. Traub, P. J. Crutzen, J. Lelieved, Oxygenated compounds in aged biomass burning plumes over the eastern Mediterranean: evidence for strong secondary production of methanol and acetone. Atmos. Chem. Phys. 2005, 5, 39.
| Oxygenated compounds in aged biomass burning plumes over the eastern Mediterranean: evidence for strong secondary production of methanol and acetone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyqsLc%3D&md5=78938d2005a2a78a93fbdd9d0e727987CAS |
[33] A. Vlasenko, J. G. Slowik, J. W. Bottenheim, P. C. Brickell, R. Y.-W. Chang, A. M. Macdonald, N. C. Shantz, S. J. Sjostedt, H. A. Wiebe, W. R. Leaitch, J. P. D. Abbatt, Measurements of VOCs by proton transfer reaction mass spectrometry at a rural Ontario site: sources and correlation to aerosol composition. J. Geophys. Res. 2009, 114, D21305.
| Measurements of VOCs by proton transfer reaction mass spectrometry at a rural Ontario site: sources and correlation to aerosol composition.Crossref | GoogleScholarGoogle Scholar |
[34] C. Granier, G. Pétron, J.-F. Müller, G. Brasseur, The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide. Atmos. Environ. 2000, 34, 5255.
| The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVWlu7o%3D&md5=b1db2a8fe409c173af62ac7322df4162CAS |
[35] M. L. White, R. S. Russo, Y. Zhou, H. Mao, R. K. Varner, J. Ambrose, P. Veres, O. W. Wingenter, K. Haase, J. Stutz, R. Talbot, B. C. Sive, Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign. J. Geophys. Res. 2008, 113, D08S90.
| Volatile organic compounds in northern New England marine and continental environments during the ICARTT 2004 campaign.Crossref | GoogleScholarGoogle Scholar |
[36] A. Borbon, H. Fontaine, N. Locoge, M. Veillerot, J.-C. Gallo, Developing receptor-oriented methods for non-methane hydrocarbon characterization in urban air. Part I: source identification. Atmos. Environ. 2003, 37, 4051.
| Developing receptor-oriented methods for non-methane hydrocarbon characterization in urban air. Part I: source identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFagsrk%3D&md5=6c4bfb598a33738b62f7f73ff0f7cd1aCAS |
[37] R. G. Derwent, T. J. Davies, M. Delaney, G. J. Dollard, R. A. Field, P. Dumitrean, P. D. Nason, B. M. R. Jones, S. A. Pepler, Analysis and interpretation of the continuous hourly monitoring data for C2–C8 hydrocarbons at 12 United Kingdom sites during 1996. Atmos. Environ. 2000, 34, 297.
| Analysis and interpretation of the continuous hourly monitoring data for C2–C8 hydrocarbons at 12 United Kingdom sites during 1996.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXks1KgsQ%3D%3D&md5=0496de3bc004cd649846c5b901dd94d5CAS |
[38] H. Hellén, H. Hakola, T. Laurila, Determination of source contributions of NMHCs in Helsinki (60°N, 25°E) using chemical mass balance and the Unmix multivariate receptor models. Atmos. Environ. 2003, 37, 1413.
| Determination of source contributions of NMHCs in Helsinki (60°N, 25°E) using chemical mass balance and the Unmix multivariate receptor models.Crossref | GoogleScholarGoogle Scholar |
[39] W. P. L. Carter, Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manage. Assoc. 1994, 44, 881..