Variations of aerosol properties due to regional source contributions and impacts on ozone levels:a study in a south China city
Ka-Ming Wai A and Peter A. Tanner A BA Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China.
B Corresponding author. Email: bhtan@cityu.edu.hk
Environmental Chemistry 7(4) 359-369 https://doi.org/10.1071/EN10020
Submitted: 9 March 2010 Accepted: 25 June 2010 Published: 20 August 2010
Environmental context. Regional atmospheric contaminants from both anthropogenic and natural events (industrial activities, biomass burning, dust events) can have large impacts on the aerosol properties of distant downwind sites. Data showing the influence of regional sources on air quality in Hong Hong are presented. In particular, the changes in aerosol properties (e.g. mass concentration and particle size distribution), and their effects on photochemical ozone formation, is discussed.
Abstract. Variations of PM10 concentration and particle size distribution owing to the influence of industrial activities in mainland China, biomass burning in South East Asia and dust storms in north-west China, as well as the aerosol impact on surface ozone concentration, have been studied by a combination of analysis of air mass origin (by back-trajectory calculation), remote sensing techniques, regional chemical transport and photochemical box models. The PM10 concentrations in Hong Kong were reduced by 24–57% owing to the industrial downtime during the Chinese New Year period. A photochemical box model coupled with a radiative transfer model has been employed to predict surface maximum ozone concentrations during high aerosol loading days. Increase of aerosol optical depth can lead to 7–32% reduction of surface maximum ozone concentration. Our results emphasise the need for regional cooperation in tackling the local air pollution of Hong Kong.
Additional keywords: biomass burning, dust, particle-size distribution, photochemical ozone, regional transport.
Acknowledgements
The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and READY website used herein; and the MODIS imagery of NASA’s Science Mission Directorate, archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We thank Dr Janet E. Nichol; the Principal Investigator of the AERONET site in Hong Kong at Hok Tsui, for her effort in establishing and maintaining the site; Dr Peter Louie of HKEPD who provided the organics data measured at the HKEPD’s Central/Western station; and Prof Itsushi Uno and his research team for providing access to the archived products of the CFORS model. We acknowledge the contribution of Mr Elton Chan to the early part of this study.
[1]
Q. Zhang ,
D. G. Streets ,
K. He ,
Z. Klimont ,
Major components of China’s anthropogenic primary particulate emissions.
Environ. Res. Lett. 2007
, 2, 045027.
| Crossref | GoogleScholarGoogle Scholar |
[Verified 25 June 2010]
[18]
[19]
[20]
K.-M. Wai ,
P. A. Tanner ,
Wind-dependent sea salt aerosol in a Western Pacific coastal area.
Atmos. Environ. 2004
, 38, 1167.
| Crossref | GoogleScholarGoogle Scholar |
[21]
I. Uno ,
G. R. Carmichael ,
D. G. Streets ,
Y. Tang ,
J. J. Yienger ,
S. Satake ,
Z. Wang ,
J.-H. Woo ,
et al. Regional chemical weather forecasting system CFORS: model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment.
J. Geophys. Res. – Atmos. 2003
, 108, 8668.
| Crossref | GoogleScholarGoogle Scholar |
[22]
I. Uno ,
S. Satake ,
G. R. Carmichael ,
Y. Tang ,
Z. Wang ,
T. Takemura ,
N. Sugimoto ,
A. Shimizu ,
T. Murayama ,
T. A. Cahill ,
S. Cliff ,
M. Uematsu ,
S. Ohta ,
P. K. Quinn ,
T. S. Bates ,
Numerical study of Asian dust transport during the springtime of 2001 simulated with the Chemical Weather Forecasting System (CFORS) model.
J. Geophys. Res. – Atmos. 2004
, D109, 19S24.
[23]
[24]
H. Guo ,
K. L. So ,
I. J. Simpson ,
B. Barletta ,
S. Meinardi ,
D. R. Blake ,
C1–C8 volatile organic compounds in the atmosphere of Hong Kong: overview of atmospheric processing and source apportionment.
Atmos. Environ. 2007
, 41, 1456.
| Crossref | GoogleScholarGoogle Scholar |
[25]
D. G. Streets ,
T. C. Bond ,
G. R. Carmichael ,
S. D. Fernandes ,
Q. Fu ,
D. He ,
Z. Klimont ,
S. M. Nelson ,
et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000.
J. Geophys. Res. – Atmos. 2003
, 108, 8809.
| Crossref | GoogleScholarGoogle Scholar |
[26]
Z. Shi ,
K. He ,
Z. Xue ,
F. Yang ,
Y. Chen ,
Y. Ma ,
J. Luo ,
Properties of individual aerosol particles and their relation to air mass origins in a south China coastal city.
J. Geophys. Res. – Atmos. 2009
, 114, D09212.
| Crossref | GoogleScholarGoogle Scholar |
[27]
S. Wu ,
B. N. Duncan ,
D. J. Jacob ,
A. M. Fiore ,
O. Wild ,
Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions.
Geophys. Res. Lett. 2009
, 36, L05806.
| Crossref | GoogleScholarGoogle Scholar |
[28]
S. Sillman ,
The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments.
Atmos. Environ. 1999
, 33, 1821.
| Crossref | GoogleScholarGoogle Scholar |
[29]
B. J. Finlayson-Pitts ,
J. N. Pitts ,
Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles.
Science 1997
, 276, 1045.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[30]
K.-M. Wai ,
P. A. Tanner ,
Case studies of Asian dust storm impacts on a coastal site: implication of a good dust storm tracer.
Water Air Soil Pollut. 2005
, 168, 59.
| Crossref | GoogleScholarGoogle Scholar |
[31]
X. Yao ,
N. T. Lau ,
C. K. Chan ,
M. Fang ,
Size distributions and condensation growth of submicron particles in on-road vehicle plumes in Hong Kong.
Atmos. Environ. 2007
, 41, 3328.
| Crossref | GoogleScholarGoogle Scholar |
[32]
O. Dubovik ,
B. Holben ,
T. Eck ,
A. Smirnov ,
Y. J. Kaufman ,
M. D. King ,
D. Tanre ,
I. Slutsker ,
Variability of absorption and optical properties of key aerosol types observed in worldwide locations.
J. Atmos. Sci. 2002
, 59, 590.
| Crossref | GoogleScholarGoogle Scholar |
[33]
J. S. Schafer ,
T. F. Eck ,
B. N. Holben ,
P. Artaxo ,
A. F. Duarte ,
Characterization of the optical properties of atmospheric aerosols in Amazonia from long-term AERONET monitoring (1993–1995 and 1999–2006).
J. Geophys. Res. – Atmos. 2008
, 113, D04204.
| Crossref | GoogleScholarGoogle Scholar |
[34]
Y. Ma ,
R. J. Weber ,
Y.-N. Lee ,
D. A. Orsini ,
K. Maxwell-Meier ,
D. C. Thornton ,
A. R. Bandy ,
A. D. Clarke ,
et al. Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment.
J. Geophys. Res. – Atmos. 2003
, 108, 8816.
| Crossref | GoogleScholarGoogle Scholar |
[35]
A. D. Clarke ,
Y. Shinozuka ,
V. N. Kapustin ,
S. Howell ,
B. Huebert ,
S. Doherty ,
T. Anderson ,
D. Covert ,
J. Anderson ,
X. Hua ,
K. G. Moore ,
C. McNaughton ,
G. Carmichael ,
R. Weber ,
Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: physiochemistry and optical properties.
J. Geophys. Res. – Atmos. 2004
, D109, 15S09.
[36]
T. F. Eck ,
B. N. Holben ,
J. S. Reid ,
N. T. O'Neill ,
J. S. Schafer ,
O. Dubovik ,
A. Smirnov ,
M. A. Yamasoe ,
P. Artaxo ,
High aerosol optical depth biomass burning events: a comparison of optical properties for different source regions.
Geophys. Res. Lett. 2003
, 30, 2035.
| Crossref | GoogleScholarGoogle Scholar |
[37]
J. S. Reid ,
P. V. Hobbs ,
R. J. Ferek ,
D. R. Blake ,
J. V. Martins ,
M. R. Dunlap ,
C. Liousse ,
Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil.
J. Geophys. Res. 1998
, 103, 32059.
| Crossref | GoogleScholarGoogle Scholar |
[38]
T. Nakajima ,
A. Higurashi ,
N. Takeuchi ,
J. R. Herman ,
Satellite and ground-based study of optical properties of 1997 Indonesian forest fire aerosols.
Geophys. Res. Lett. 1999
, 26, 2421.
| Crossref | GoogleScholarGoogle Scholar |
[39]
T. F. Eck ,
B. N. Holben ,
O. Dubovik ,
A. Smirnov ,
P. Goloub ,
H. B. Chen ,
B. Chatenet ,
L. Gomes ,
et al. Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific.
J. Geophys. Res. – Atmos. 2005
, 110, D06202.
| Crossref | GoogleScholarGoogle Scholar |
[40]
T. A. Semeniuk ,
M. E. Wise ,
S. T. Martin ,
L. M. Russell ,
P. R. Buseck ,
Hygroscopic behavior of aerosol particles from biomass fires using environmental transmission electron microscopy.
J. Atmos. Chem. 2007
, 56, 259.
| Crossref | GoogleScholarGoogle Scholar |
[41]
X. Yang ,
M. Wenig ,
Study of columnar aerosol size distribution in Hong Kong.
Atmos. Chem. Phys. 2009
, 9, 6175.
| Crossref | GoogleScholarGoogle Scholar |
[42]
[43]
[44]
L. W. Lee ,
C. Chen ,
Coagulation rate of polydisperse particles.
Aerosol Sci. Technol. 1984
, 3, 327.
| Crossref | GoogleScholarGoogle Scholar |
[45]
J. Cao ,
S. Lee ,
X. Zheng ,
K. Ho ,
X. Zhang ,
H. Guo ,
J. C. Chow ,
H. Wang ,
Characterization of dust storms to Hong Kong in April 1998.
Water Air Soil Pollut. Focus 2003
, 3, 213.
| Crossref | GoogleScholarGoogle Scholar |
[46]
S. Kanayama ,
S. Yabuki ,
F. Yanagisawa ,
R. Motoyama ,
The chemical and strontium isotope composition of atmospheric aerosols over Japan: the contribution of long-range-transported Asian dust (Kosa).
Atmos. Environ. 2002
, 36, 5159.
| Crossref | GoogleScholarGoogle Scholar |
[47]
H.-J. In ,
S.-U. Park ,
A simulation of long-range transport of yellow sand observed in April 1998 in Korea.
Atmos. Environ. 2002
, 36, 4173.
| Crossref | GoogleScholarGoogle Scholar |
[48]
S.-W. Kim ,
S.-C. Yoon ,
J. Kim ,
S.-Y. Kim ,
Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements.
Atmos. Environ. 2007
, 41, 1634.
| Crossref | GoogleScholarGoogle Scholar |
[49]
A. Smirnov ,
B. N. Holben ,
I. Slutsker ,
E. J. Welton ,
P. Formenti ,
Optical properties of Saharan dust during ACE 2.
J. Geophys. Res. – Atmos. 1998
, 103, 28079.
| Crossref | GoogleScholarGoogle Scholar |
[50]
[51]
P. Gupta ,
S. A. Christopher ,
J. Wang ,
R. Gehrig ,
Y. C. Lee ,
N. Kumar ,
Satellite remote sensing of particulate matter and air quality assessment over global cities.
Atmos. Environ. 2006
, 40, 5880.
| Crossref | GoogleScholarGoogle Scholar |
[52]
Y. C. Lee ,
G. Calori ,
P. Hills ,
G. R. Carmichael ,
Ozone episodes in urban Hong Kong 1994–1999.
Atmos. Environ. 2002
, 36, 1957.
| Crossref | GoogleScholarGoogle Scholar |
[53]
K. S. Lam ,
T. J. Wang ,
L. Y. Chan ,
T. Wang ,
J. Harris ,
Flow patterns influencing the seasonal behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong.
Atmos. Environ. 2001
, 35, 3121.
| Crossref | GoogleScholarGoogle Scholar |
[54]
L. Vuilleumier ,
J. T. Bamer ,
R. A. Harley ,
N. J. Brown ,
Evaluation of nitrogen dioxide photolysis rates in an urban area using data from the 1997 Southern California Ozone Study.
Atmos. Environ. 2001
, 35, 6525.
| Crossref | GoogleScholarGoogle Scholar |
[55]
Q. He ,
C. Li ,
J. Mao ,
A. K.-H. Lau ,
D. A. Chu ,
Analysis of aerosol vertical distribution and variability in Hong Kong.
J. Geophys. Res. – Atmos. 2008
, 113, D14211.
| Crossref | GoogleScholarGoogle Scholar |
[56]
[57]
M. Jacobson ,
Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed.
J. Geophys. Res. – Atmos. 1998
, 103, 10593.
| Crossref | GoogleScholarGoogle Scholar |