Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils

Geert Cornelis A E , Jason K. Kirby B , Douglas Beak B D , David Chittleborough C and Mike J. McLaughlin A B
+ Author Affiliations
- Author Affiliations

A School of Food, Agriculture and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.

B CSIRO Land and Water, Centre for Environmental Contaminants Research, Advanced Materials Transformational Capability Platform, PMB 2, Glen Osmond, SA 5064, Australia. Email: jason.kirby@csiro.au; doug.beak@csiro.au; mike.mclaughlin@csiro.au

C School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia. Email: david.chittleborough@adelaide.edu.au

D Present address: US Environmental Protection Agency, National Risk Management Research Laboratory, 919 Kerr Research Drive, Ada, OK 74820, USA.

E Corresponding author. Email: geert.cornelis@adelaide.edu.au

Environmental Chemistry 7(3) 298-308 https://doi.org/10.1071/EN10013
Submitted: 10 February 2010  Accepted: 14 April 2010   Published: 22 June 2010

Environmental context. Soils are the environmental compartment likely to be exposed most to manufactured nanoparticles, but there is no method available at present to assess their retention, which determines potential mobility and bioavailability. Optimisation and application of a method to determine retention values for silver (Ag) and cerium oxide (CeO2) manufactured nanoparticles in soils found in many cases that they differed from the partitioning of their bulk and soluble counterparts. Wider application of this method can assist in comparing the risk of many different manufactured nanoparticles with other contaminants in soil systems and model their relationship to soil properties.

Abstract. Methods to study the retention of manufactured nanoparticles (MNP) are lacking for soils that are likely to be increasingly exposed to MNP. In this study we present, for the first time, a method to determine retention values (Kr) of Ag and CeO2 MNP, that can be ranked among solid–liquid partitioning (Kd) values of bulk (micrometre-sized) forms, soluble salts and other possible contaminants of soils. After method optimisation, suspensions containing 1.24 mg kg–1 Ag as Ag MNP and 1.30 mg kg–1 Ce as CeO2 MNP were added to five soils. More than 7% of Ag MNP occurred as soluble AgI after 24 h and the range of Kr values of Ag MNP (77–2165 L kg–1) and CeO2 MNP (1.1–2828 L kg–1) contrasted with Kd values of soluble AgI, CeIII and CeIV salts and bulk Ag and CeO2 powders in different soils.

Additional keywords: Kd, Kr, partitioning, risk assessment, transport.


Acknowledgements

This work was partly funded by the Australian Government Department of Environment, Water, Heritage and the Arts and the Australian Research Council (Discovery Project DP0879165). The US EPA has not subjected this manuscript to internal policy review. Therefore, the research results presented herein do not necessarily reflect Agency policy. Mention of trade names of commercial products and companies does not constitute endorsement or recommendation for use.


References


[1]   Maynard A. D., Michelson E., The Nanotechnology Consumer Products Inventory 2007 (PEN: Washington DC).

[2]   S. J. Klaine , P. J. J. Alvarez , G. E. Batley , T. F. Fernandes , R. D. Handy , D. Y. Lyon , S. Mahendra , M. J. McLaughlin , J. R. Lead , Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008 , 27,  1825.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[3]   (a) R. D. Handy , F. von der Kammer , J. R. Lead , M. Hassellov , R. Owen , M. Crane , The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 2008 , 17,  287.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1
       (b) J. R. Lead , K. J. Wilkinson , Aquatic colloids and nanoparticles: current knowledge and future trends. Environ. Chem. 2006 , 3,  159.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   F. Gottschalk , T. Sonderer , R. W. Scholz , B. Nowack , Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009 , 43,  9216.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[5]   (a) L. K. Limbach , R. Bereiter , E. Mueller , R. Krebs , R. Gaelli , W. J. Stark , Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol. 2008 , 42,  5828.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1
       (b) M. A. Kiser , P. Westerhoff , T. Benn , Y. Wang , J. Perez-Rivera , K. Hristovski , Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 2009 , 43,  6757.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1
       (c) H. P. Jarvie , H. Al-Obaidi , S. M. King , M. J. Bowes , M. J. Lawrence , A. F. Drake , M. A. Green , P. J. Dobson , Fate of silica nanoparticles in simulated primary wastewater treatment. Environ. Sci. Technol. 2009 , 43,  8622.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   (a) S. A. Blaser , M. Scheringer , M. MacLeod , K. Hungerbuhler , Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 2008 , 390,  396.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1
       (b) N. C. Mueller , B. Nowack , Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 2008 , 42,  4447.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[7]   Boxall A. B. A., Chaudhry Q., Sinclair C., Jones A., Aitken R., Jefferson B., Watt C., Current and Future Predicted Environmental Exposure to Engineered Nanoparticles, prepared for the UK Department of Environment, Food and Rural Affairs 2007 (Central Science Laboratory, University of York: York, UK).

[8]   W.-X. Zhang , D. Elliott , Applications of iron nanoparticles for groundwater remediation. Remediation 2006 , 16,  7.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   Z. Tong , M. Bischoff , L. Nies , B. Applegate , R. F. Turco , Impact of fullerene (C60) on a soil microbial community. Environ. Sci. Technol. 2007 , 41,  2985.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[10]   US Environmental Protection Agency, Draft Nanomaterial Research Strategy, EPA/600/S-08/002 2008 (US Environmental Protection Agency: Washington DC).

[11]   (a) A. J. Pelley , N. Tufenkji , Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J. Colloid Interface Sci. 2008 , 321,  74.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1
         (b) N. Saleh , H. J. Kim , T. Phenrat , K. Matyjaszewski , R. D. Tilton , G. V. Lowry , Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol. 2008 , 42,  3349.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1
         (c) H. F. Lecoanet , J. Y. Bottero , M. R. Wiesner , Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol. 2004 , 38,  5164.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   J. Fang , X. Q. Shan , B. Wen , J. M. Lin , G. Owens , Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ. Pollut. 2009 , 157,  1101.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[13]   R. L. Johnson , G. O. B. Johnson , J. T. Nurmi , P. G. Tratnyek , Natural organic matter enhanced mobility of nano zerovalent iron. Environ. Sci. Technol. 2009 , 43,  5455.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[14]   E. Navarro , F. Piccapietra , B. Wagner , F. Marconi , R. Kaegi , N. Odzak , L. Sigg , R. Behra , Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008 , 42,  8959.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   K. Van Hoecke , J. T. K. Quik , J. Mankiewicz-Boczek , K. A. C. D. Schamphelaere , A. Elsaesser , P. Van der Meeren , C. Barnes , G. McKerr , et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ. Sci. Technol. 2009 , 43,  4537.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   J.-y. Roh , S. J. Sim , J. Yi , K. Park , K. H. Chung , D.-y. Ryu , J. Choi , Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol. 2009 , 43,  3933.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   (a) J. S. Kim , E. Kuk , K. N. Yu , J.-H. Kim , S. J. Park , H. J. Lee , S. H. Kim , Y. K. Park , et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007 , 3,  95.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1
         (b) S. Pal , Y. K. Tak , J. M. Song , Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007 , 73,  1712.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1
         (c) M. Yamanaka , K. Hara , J. Kudo , Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 2005 , 71,  7589.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[18]   A. Thill , O. Zeyons , O. Spalla , F. Chauvat , J. Rose , M. Auffan , A. M. Flank , Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 2006 , 40,  6151.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[19]   T. Xia , M. Kovochich , M. Liong , L. Madler , B. Gilbert , H. B. Shi , J. I. Yeh , J. I. Zink , A. E. Nel , Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008 , 2,  2121.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   OECD Guideline for the Testing of Chemicals 2000 (Organisation for Economic Co-operation and Development: Paris).

[21]   S. Sauvé , W. Hendershot , H. E. Allen , Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 2000 , 34,  1125.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   N. J. Barrow , J. Gerth , G. W. Brummer , Reaction-kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. II. Modeling the extent and rate of reaction. J. Soil Sci. 1989 , 40,  437.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   N. M. Franklin , N. J. Rogers , S. C. Apte , G. E. Batley , G. E. Gadd , P. S. Casey , Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 2007 , 41,  8484.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   Moore D. M., Reynolds R. C., X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edn 1997 (Oxford University Press: New York).

[25]   D. E. Koppel , Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J. Chem. Phys. 1972 , 57,  4814.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   A. Henglein , M. Giersig , Formation of colloidal silver nanoparticles: capping action of citrate. J. Phys. Chem. B 1999 , 103,  9533.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[27]   Lead J. R., Wilkinson K. J., Environmental colloids and particles: current knowledge and future developments, in Environmental Colloids and Particles (Eds K. J. Wilkinson, J. R. Lead) 2007, pp. 1–16 (Wiley: Chichester, UK).

[28]   (a) A. M. Ure , P. Quevauviller , H. Muntau , B. Griepink , Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Chem. 1993 , 51,  135.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1
         (b) Hansen D. J., Di Toro D. M., Berry W. J., Boothman W. S., Burgess R. M., Ankley G. T., McGrath J. A., Bell H. E., Reiley M. C., Zarba C. S., Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc), EPA/600/R-02/011 2005 (US Environmental Protection Agency: Naragansett, RI).

[29]   J. Fabrega , S. R. Fawcett , J. C. Renshaw , J. R. Lead , Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 2009 , 43,  7285.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   (a) C. Angehrn-bettinazzi , Factors affecting the investigation of heavy metal speciation in forest soils using thin-channel ultrafiltration. Int. J. Environ. Chem. 1990 , 39,  81.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1
         (b) L. Weltje , W. den Hollander , H. T. Wolterbeek , Adsorption of metals to membrane filters in view of their speciation in nutrient solution. Environ. Toxicol. Chem. 2003 , 22,  265.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1
         (c) Guo L. D., Santschi P. H., Ultrafiltration and its applications to sampling and characterisation of aquatic colloids, in Environmental Colloids and Particles, Behaviour, Separation and Characterisation (Eds K. J. Wilkinson, J. R. Lead) 2007, pp. 159–222 (Wiley: Chichester, UK).

[31]   (a) Cowan C. E., Jenne E. A., Crecelius E. A., Silver speciation in seawater: the importance of sulfide and organic complexation, in Marine and Estuarine Geochemistry (Eds A. C. Sigleo, A. Hattori) 1985, pp. 285–203 (Lewis Publishers: Chelsea, MI).
         (b) Manolopoulos H., Silver mobility in the presence of iron sulphides under oxidizing conditions, in Transport, Fate, and Effect of Silver in the Environment. Proceedings of the 5th International Conference, Hamilton, Ontario, 28 September–1 October (Eds A. Andren, T. Bober) 1997, pp. 133–135 (University of Wisconsin Sea Grant Institute: Madison, WI).

[32]   Stumm W., Morgan J. J., Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edn 1996 (Wiley: New York).

[33]   K. Li , S. L. Zhao , J. Ma , Study on solubility of cerium(IV) phosphate. J. Rare Earths 2005 , 23,  51.
         open url image1

[34]   (a) J. Schaep , B. Van der Bruggen , C. Vandecasteele , D. Wilms , Influence of ion size and charge in nanofiltration. Separ. Purif. Tech. 1998 , 14,  155.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1
         (b) L. D. Guo , B. J. Hunt , P. H. Santschi , Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters. Water Res. 2001 , 35,  1500.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   S. A. Hayes , P. Yu , T. J. O’Keefe , M. J. O’Keefe , J. O. Stoffer , The phase stability of cerium species in aqueous systems – I. E-pH diagram for the Ce–HClO4–H2O system. J. Electrochem. Soc. 2002 , 149,  C623.
        |  CAS | | Crossref |  open url image1

[36]   P. Yu , S. A. Hayes , T. J. O’Keefe , M. J. O’Keefe , J. O. Stoffer , The phase stability of cerium species in aqueous systems – II. The Ce(III/IV)–H2O–H2O2/O2 systems. Equilibrium considerations and Pourbaix diagram calculations. J. Electrochem. Soc. 2006 , 153,  C74.
        |  CAS | | Crossref |  open url image1

[37]   E. R. Sholkovitz , T. J. Shaw , D. L. Schneider , The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay. Geochim. Cosmochim. Acta 1992 , 56,  3389.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   S. G. Bratsch , Standard electrode-potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 1989 , 18,  1.
        |  CAS | | Crossref |  open url image1

[39]   A. R. Jacobson , M. B. McBride , P. Baveye , T. S. Steenhuis , Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci. Total Environ. 2005 , 345,  191.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[40]   Y. Hashimoto , Citrate sorption and biodegradation in acid soils with implications for aluminum rhizotoxicity. Appl. Geochem. 2007 , 22,  2861.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   P. A. W. Van Hees , D. L. Jones , D. L. Godbold , Biodegradation of low molecular weight organic acids in a limed forest soil. Water Air Soil Pollut. 2003 , 3,  121.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   F. Degryse , E. Smolders , D. R. Parker , Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review. Eur. J. Soil Sci. 2009 , 60,  590.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[43]   T. M. Benn , P. Westerhoff , Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008 , 42,  4133.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[44]   Mavrocordatos D., Perret D., Leppard G. G., Strategies and advances in the characterisation of environmental colloids by electron microscopy, in Environmental Colloids and Particles: Behaviour, Separation and Characterisation (Eds K. J. Wilkinson, J. R. Lead) 2007, pp. 345–404 (Wiley: Chichester, UK).

[45]   M. J. McLaughlin , K. G. Tiller , M. K. Smart , Speciation of cadmium in soil solutions of saline/sodic soils and relationship with cadmium concentrations in potato tubers (Solanum tuberosum L.). Aust. J. Soil Res. 1997 , 35,  183.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[46]   (a) Rayment G. E., Higginson F. R., Australian Laboratory Handbook of Soil and Water Chemical Methods 1992 (Inkata Press: Melbourne).
         (b) Gee G. W., Bauder J. W., Particle size analysis, in Methods of Soil Analysis. Part 1 (Ed. A. Klute) 1986, pp. 337–382 (American Society of Agronomy and Soil Science Society of America: Madison, WI).

[47]   US-EPA, Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils 1998 (US Environmental Protection Agency: Washington, DC).

[48]   IRMM, European Reference Material (ERM) CC690, a calcareous soil reference standard 2004 (Institute for Reference Materials and Measurements: Geel, Belgium).

[49]   NRC-CNRC, HISS-1, MESS-3, PACS-2, Marine Sediment Reference Materials for Trace Metals and other Constituents 1997 (National Research Council – Conseil National de Recherche Canadien: Ottawa, ON).