A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils
Geert Cornelis A E , Jason K. Kirby B , Douglas Beak B D , David Chittleborough C and Mike J. McLaughlin A BA School of Food, Agriculture and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.
B CSIRO Land and Water, Centre for Environmental Contaminants Research, Advanced Materials Transformational Capability Platform, PMB 2, Glen Osmond, SA 5064, Australia. Email: jason.kirby@csiro.au; doug.beak@csiro.au; mike.mclaughlin@csiro.au
C School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia. Email: david.chittleborough@adelaide.edu.au
D Present address: US Environmental Protection Agency, National Risk Management Research Laboratory, 919 Kerr Research Drive, Ada, OK 74820, USA.
E Corresponding author. Email: geert.cornelis@adelaide.edu.au
Environmental Chemistry 7(3) 298-308 https://doi.org/10.1071/EN10013
Submitted: 10 February 2010 Accepted: 14 April 2010 Published: 22 June 2010
Environmental context. Soils are the environmental compartment likely to be exposed most to manufactured nanoparticles, but there is no method available at present to assess their retention, which determines potential mobility and bioavailability. Optimisation and application of a method to determine retention values for silver (Ag) and cerium oxide (CeO2) manufactured nanoparticles in soils found in many cases that they differed from the partitioning of their bulk and soluble counterparts. Wider application of this method can assist in comparing the risk of many different manufactured nanoparticles with other contaminants in soil systems and model their relationship to soil properties.
Abstract. Methods to study the retention of manufactured nanoparticles (MNP) are lacking for soils that are likely to be increasingly exposed to MNP. In this study we present, for the first time, a method to determine retention values (Kr) of Ag and CeO2 MNP, that can be ranked among solid–liquid partitioning (Kd) values of bulk (micrometre-sized) forms, soluble salts and other possible contaminants of soils. After method optimisation, suspensions containing 1.24 mg kg–1 Ag as Ag MNP and 1.30 mg kg–1 Ce as CeO2 MNP were added to five soils. More than 7% of Ag MNP occurred as soluble AgI after 24 h and the range of Kr values of Ag MNP (77–2165 L kg–1) and CeO2 MNP (1.1–2828 L kg–1) contrasted with Kd values of soluble AgI, CeIII and CeIV salts and bulk Ag and CeO2 powders in different soils.
Additional keywords: Kd, Kr, partitioning, risk assessment, transport.
Acknowledgements
This work was partly funded by the Australian Government Department of Environment, Water, Heritage and the Arts and the Australian Research Council (Discovery Project DP0879165). The US EPA has not subjected this manuscript to internal policy review. Therefore, the research results presented herein do not necessarily reflect Agency policy. Mention of trade names of commercial products and companies does not constitute endorsement or recommendation for use.
[1]
[2]
S. J. Klaine ,
P. J. J. Alvarez ,
G. E. Batley ,
T. F. Fernandes ,
R. D. Handy ,
D. Y. Lyon ,
S. Mahendra ,
M. J. McLaughlin ,
J. R. Lead ,
Nanomaterials in the environment: behavior, fate, bioavailability, and effects.
Environ. Toxicol. Chem. 2008
, 27, 1825.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[3]
(a) R. D. Handy ,
F. von der Kammer ,
J. R. Lead ,
M. Hassellov ,
R. Owen ,
M. Crane ,
The ecotoxicology and chemistry of manufactured nanoparticles.
Ecotoxicology 2008
, 17, 287.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
(b) J. R. Lead ,
K. J. Wilkinson ,
Aquatic colloids and nanoparticles: current knowledge and future trends.
Environ. Chem. 2006
, 3, 159.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[4]
F. Gottschalk ,
T. Sonderer ,
R. W. Scholz ,
B. Nowack ,
Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions.
Environ. Sci. Technol. 2009
, 43, 9216.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[5]
(a) L. K. Limbach ,
R. Bereiter ,
E. Mueller ,
R. Krebs ,
R. Gaelli ,
W. J. Stark ,
Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency.
Environ. Sci. Technol. 2008
, 42, 5828.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
(b) M. A. Kiser ,
P. Westerhoff ,
T. Benn ,
Y. Wang ,
J. Perez-Rivera ,
K. Hristovski ,
Titanium nanomaterial removal and release from wastewater treatment plants.
Environ. Sci. Technol. 2009
, 43, 6757.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
(c) H. P. Jarvie ,
H. Al-Obaidi ,
S. M. King ,
M. J. Bowes ,
M. J. Lawrence ,
A. F. Drake ,
M. A. Green ,
P. J. Dobson ,
Fate of silica nanoparticles in simulated primary wastewater treatment.
Environ. Sci. Technol. 2009
, 43, 8622.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
(a) S. A. Blaser ,
M. Scheringer ,
M. MacLeod ,
K. Hungerbuhler ,
Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles.
Sci. Total Environ. 2008
, 390, 396.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
(b) N. C. Mueller ,
B. Nowack ,
Exposure modeling of engineered nanoparticles in the environment.
Environ. Sci. Technol. 2008
, 42, 4447.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
[8]
W.-X. Zhang ,
D. Elliott ,
Applications of iron nanoparticles for groundwater remediation.
Remediation 2006
, 16, 7.
| Crossref | GoogleScholarGoogle Scholar |
[9]
Z. Tong ,
M. Bischoff ,
L. Nies ,
B. Applegate ,
R. F. Turco ,
Impact of fullerene (C60) on a soil microbial community.
Environ. Sci. Technol. 2007
, 41, 2985.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[10]
[11]
(a) A. J. Pelley ,
N. Tufenkji ,
Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media.
J. Colloid Interface Sci. 2008
, 321, 74.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
(b) N. Saleh ,
H. J. Kim ,
T. Phenrat ,
K. Matyjaszewski ,
R. D. Tilton ,
G. V. Lowry ,
Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.
Environ. Sci. Technol. 2008
, 42, 3349.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
(c) H. F. Lecoanet ,
J. Y. Bottero ,
M. R. Wiesner ,
Laboratory assessment of the mobility of nanomaterials in porous media.
Environ. Sci. Technol. 2004
, 38, 5164.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
J. Fang ,
X. Q. Shan ,
B. Wen ,
J. M. Lin ,
G. Owens ,
Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns.
Environ. Pollut. 2009
, 157, 1101.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
R. L. Johnson ,
G. O. B. Johnson ,
J. T. Nurmi ,
P. G. Tratnyek ,
Natural organic matter enhanced mobility of nano zerovalent iron.
Environ. Sci. Technol. 2009
, 43, 5455.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
E. Navarro ,
F. Piccapietra ,
B. Wagner ,
F. Marconi ,
R. Kaegi ,
N. Odzak ,
L. Sigg ,
R. Behra ,
Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.
Environ. Sci. Technol. 2008
, 42, 8959.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
K. Van Hoecke ,
J. T. K. Quik ,
J. Mankiewicz-Boczek ,
K. A. C. D. Schamphelaere ,
A. Elsaesser ,
P. Van der Meeren ,
C. Barnes ,
G. McKerr ,
et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests.
Environ. Sci. Technol. 2009
, 43, 4537.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
J.-y. Roh ,
S. J. Sim ,
J. Yi ,
K. Park ,
K. H. Chung ,
D.-y. Ryu ,
J. Choi ,
Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics.
Environ. Sci. Technol. 2009
, 43, 3933.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
(a) J. S. Kim ,
E. Kuk ,
K. N. Yu ,
J.-H. Kim ,
S. J. Park ,
H. J. Lee ,
S. H. Kim ,
Y. K. Park ,
et al. Antimicrobial effects of silver nanoparticles.
Nanomedicine 2007
, 3, 95.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
(b) S. Pal ,
Y. K. Tak ,
J. M. Song ,
Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium
Escherichia coli. Appl. Environ. Microbiol. 2007
, 73, 1712.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
(c) M. Yamanaka ,
K. Hara ,
J. Kudo ,
Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis.
Appl. Environ. Microbiol. 2005
, 71, 7589.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[18]
A. Thill ,
O. Zeyons ,
O. Spalla ,
F. Chauvat ,
J. Rose ,
M. Auffan ,
A. M. Flank ,
Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism.
Environ. Sci. Technol. 2006
, 40, 6151.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
T. Xia ,
M. Kovochich ,
M. Liong ,
L. Madler ,
B. Gilbert ,
H. B. Shi ,
J. I. Yeh ,
J. I. Zink ,
A. E. Nel ,
Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties.
ACS Nano 2008
, 2, 2121.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
[21]
S. Sauvé ,
W. Hendershot ,
H. E. Allen ,
Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter.
Environ. Sci. Technol. 2000
, 34, 1125.
| Crossref | GoogleScholarGoogle Scholar |
[22]
N. J. Barrow ,
J. Gerth ,
G. W. Brummer ,
Reaction-kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. II. Modeling the extent and rate of reaction.
J. Soil Sci. 1989
, 40, 437.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
N. M. Franklin ,
N. J. Rogers ,
S. C. Apte ,
G. E. Batley ,
G. E. Gadd ,
P. S. Casey ,
Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility.
Environ. Sci. Technol. 2007
, 41, 8484.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[24]
[25]
D. E. Koppel ,
Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants.
J. Chem. Phys. 1972
, 57, 4814.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
A. Henglein ,
M. Giersig ,
Formation of colloidal silver nanoparticles: capping action of citrate.
J. Phys. Chem. B 1999
, 103, 9533.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
[28]
(a) A. M. Ure ,
P. Quevauviller ,
H. Muntau ,
B. Griepink ,
Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities.
Int. J. Environ. Chem. 1993
, 51, 135.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[29]
J. Fabrega ,
S. R. Fawcett ,
J. C. Renshaw ,
J. R. Lead ,
Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter.
Environ. Sci. Technol. 2009
, 43, 7285.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[30]
(a) C. Angehrn-bettinazzi ,
Factors affecting the investigation of heavy metal speciation in forest soils using thin-channel ultrafiltration.
Int. J. Environ. Chem. 1990
, 39, 81.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
(b) L. Weltje ,
W. den Hollander ,
H. T. Wolterbeek ,
Adsorption of metals to membrane filters in view of their speciation in nutrient solution.
Environ. Toxicol. Chem. 2003
, 22, 265.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[31]
[32]
[33]
K. Li ,
S. L. Zhao ,
J. Ma ,
Study on solubility of cerium(IV) phosphate.
J. Rare Earths 2005
, 23, 51.
[34]
(a) J. Schaep ,
B. Van der Bruggen ,
C. Vandecasteele ,
D. Wilms ,
Influence of ion size and charge in nanofiltration.
Separ. Purif. Tech. 1998
, 14, 155.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
(b) L. D. Guo ,
B. J. Hunt ,
P. H. Santschi ,
Ultrafiltration behavior of major ions (Na, Ca, Mg, F, Cl, and SO4) in natural waters.
Water Res. 2001
, 35, 1500.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
S. A. Hayes ,
P. Yu ,
T. J. O’Keefe ,
M. J. O’Keefe ,
J. O. Stoffer ,
The phase stability of cerium species in aqueous systems – I. E-pH diagram for the Ce–HClO4–H2O system.
J. Electrochem. Soc. 2002
, 149, C623.
|
CAS |
| Crossref |
[36]
P. Yu ,
S. A. Hayes ,
T. J. O’Keefe ,
M. J. O’Keefe ,
J. O. Stoffer ,
The phase stability of cerium species in aqueous systems – II. The Ce(III/IV)–H2O–H2O2/O2 systems. Equilibrium considerations and Pourbaix diagram calculations.
J. Electrochem. Soc. 2006
, 153, C74.
|
CAS |
| Crossref |
[37]
E. R. Sholkovitz ,
T. J. Shaw ,
D. L. Schneider ,
The geochemistry of rare earth elements in the seasonally anoxic water column and porewaters of Chesapeake Bay.
Geochim. Cosmochim. Acta 1992
, 56, 3389.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[38]
S. G. Bratsch ,
Standard electrode-potentials and temperature coefficients in water at 298.15 K.
J. Phys. Chem. Ref. Data 1989
, 18, 1.
|
CAS |
| Crossref |
[39]
A. R. Jacobson ,
M. B. McBride ,
P. Baveye ,
T. S. Steenhuis ,
Environmental factors determining the trace-level sorption of silver and thallium to soils.
Sci. Total Environ. 2005
, 345, 191.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[40]
Y. Hashimoto ,
Citrate sorption and biodegradation in acid soils with implications for aluminum rhizotoxicity.
Appl. Geochem. 2007
, 22, 2861.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[41]
P. A. W. Van Hees ,
D. L. Jones ,
D. L. Godbold ,
Biodegradation of low molecular weight organic acids in a limed forest soil.
Water Air Soil Pollut. 2003
, 3, 121.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
F. Degryse ,
E. Smolders ,
D. R. Parker ,
Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review.
Eur. J. Soil Sci. 2009
, 60, 590.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[43]
T. M. Benn ,
P. Westerhoff ,
Nanoparticle silver released into water from commercially available sock fabrics.
Environ. Sci. Technol. 2008
, 42, 4133.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[44]
[45]
M. J. McLaughlin ,
K. G. Tiller ,
M. K. Smart ,
Speciation of cadmium in soil solutions of saline/sodic soils and relationship with cadmium concentrations in potato tubers (Solanum tuberosum L.).
Aust. J. Soil Res. 1997
, 35, 183.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[46]
[47]
[48]
[49]