Relationships between atmospheric organic compounds and air-mass exposure to marine biology
S. R. Arnold A G , D. V. Spracklen A , S. Gebhardt B , T. Custer B , J. Williams B , I. Peeken C D E and S. Alvain FA Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
B Max Planck Institute for Chemistry, Joh.-Joachim-Becher-Weg 27, D-55128 Mainz, Germany.
C Ifm GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, Germany.
D Center for Marine Environmental Sciences (MARUM), Leobener Strasse, D-28359 Bremen, Germany.
E Alfred-Wegener-Institute for Polar- and Marine Research, Biological Oceanography, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
F Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Océanologie et de Géosciences (LOG), Unité Mixte de Recherche (UMR) 8187, 32 Avenue Foch, F-62930 Wimereux, France.
G Corresponding author. Email: s.arnold@leeds.ac.uk
Environmental Chemistry 7(3) 232-241 https://doi.org/10.1071/EN09144
Submitted: 15 November 2009 Accepted: 20 April 2010 Published: 22 June 2010
Environmental context. The exchange of gases between the atmosphere and oceans impacts Earth’s climate. Over the remote oceans, marine emissions of organic species may have significant impacts on cloud properties and the atmosphere’s oxidative capacity. Quantifying these emissions and their dependence on ocean biology over the global oceans is a major challenge. Here we present a new method which relates atmospheric abundance of several organic chemicals over the South Atlantic Ocean to the exposure of air to ocean biology over several days before its sampling.
Abstract. We have used a Lagrangian transport model and satellite observations of oceanic chlorophyll-a concentrations and phytoplankton community structure, to investigate relationships between air mass biological exposure and atmospheric concentrations of organic compounds over the remote South Atlantic Ocean in January and February 2007. Accounting for spatial and temporal exposure of air masses to chlorophyll from biologically active ocean regions upwind of the observation location produces significant correlations with atmospheric organohalogens, despite insignificant or smaller correlations using commonly applied in-situ chlorophyll. Strongest correlations (r = 0.42–0.53) are obtained with chlorophyll exposure over a 2-day transport history for CHBr3, CH2Br2, CH3I, and dimethylsulfide, and are strengthened further with exposure to specific phytoplankton types. Incorporating daylight and wind-speed terms into the chlorophyll exposure results in reduced correlations. The method demonstrates that conclusions drawn regarding oceanic trace-gas sources from in-situ chlorophyll or satellite chlorophyll averages over arbitrary areas may prove erroneous without accounting for the transport history of air sampled.
Acknowledgements
This work was part of the OOMPH project (018419) which was funded under the EU sixth framework programme. The authors are grateful for logistical support from the Institut Polaire Francais Aerotrace program during the Southern Ocean cruise. The authors thank Paul Berrisford, Alan Iwi and the British Atmospheric Data Centre for facilitating access to ECMWF analysis data. The authors acknowledge funding from a British Council Academic Research Collaboration (ARC) grant.
[1]
G. E. Shaw ,
Bio-controlled thermostasis involving the sulfur cycle.
Clim. Change 1983
, 5, 297.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[2]
R. J. Charlson ,
J. E. Lovelock ,
M. O. Andreae ,
S. G. Warren ,
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.
Nature 1987
, 326, 655.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[3]
P. S. Liss ,
A. D. Hatton ,
G. Malin ,
P. D. Nightingale ,
S. M. Turner ,
Marine sulphur emissions.
Philos. T. Roy. Soc. B 1997
, 352, 159.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[4]
G. P. Ayers ,
J. M. Cainey ,
The CLAW hypothesis: a review of the major developments.
Environ. Chem. 2007
, 4, 366.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
N. Meskhidze ,
A. Nenes ,
Phytoplankton and cloudiness in the Southern Ocean.
Science 2006
, 314, 1419.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[6]
C. D. O’Dowd ,
M. C. Facchini ,
F. Cavalli ,
D. Ceburnis ,
M. Mircea ,
S. Decesari ,
S. Fuzzi ,
Y. J. Yoon ,
J.-P. Putaud ,
Biogenically driven organic contribution to marine aerosol.
Nature 2004
, 431, 676.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
Y. J. Yoon ,
D. Ceburnis ,
F. Cavalli ,
O. Jourdan ,
J. P. Putaud ,
M. C. Facchini ,
S. Decesari ,
S. Fuzzi ,
K. Sellegri ,
S. G. Jennings ,
C. D. O’Dowd ,
Seasonal characteristics of the physiochemical properties of North Atlantic marine atmospheric aerosols.
J. Geophys. Res. 2007
, 112, D04206.
| Crossref | GoogleScholarGoogle Scholar |
[8]
B. Langmann ,
C. Scannell ,
C. O’Dowd ,
New directions: organic matter contribution to marine aerosols and cloud condensation nuclei.
Atmos. Environ. 2008
, 42, 7821.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
D. V. Spracklen ,
S. R. Arnold ,
J. Sciare ,
K. S. Carslaw ,
C. Pio ,
Globally significant oceanic source of organic carbon aerosol.
Geophys. Res. Lett. 2008
, 35, L12811.
| Crossref | GoogleScholarGoogle Scholar |
[10]
G. J. Roelofs ,
A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation.
Atmos. Chem. Phys. 2008
, 8, 709.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[11]
P. I. Palmer ,
S. L. Shaw ,
Quantifying global marine isoprene fluxes using MODIS chlorophyll observations.
Geophys. Res. Lett. 2005
, 32, L09805.
| Crossref | GoogleScholarGoogle Scholar |
[12]
S. R. Arnold ,
D. V. Spracklen ,
J. Williams ,
N. Yassaa ,
J. Sciare ,
B. Bonsang ,
V. Gros ,
I. Peeken ,
et al. Evaluation of the global oceanic isoprene source and its impacts on marine organic carbon aerosol.
Atmos. Chem. Phys. 2009
, 9, 1253.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
B. Gantt ,
N. Meskhidze ,
D. Kamykowski ,
A new physically-based quantification of marine isoprene and primary organic aerosol emissions.
Atmos. Chem. Phys. 2009
, 9, 4915.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[14]
N. Yassaa ,
I. Peeken ,
E. Zöllner ,
K. Bluhm ,
S. R. Arnold ,
D. V. Spracklen ,
H. Wernli ,
J. Williams ,
Evidence for marine production of monoterpenes.
Environ. Chem. 2008
, 5, 391.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
[16]
[17]
D. Davis ,
J. Crawford ,
S. Liu ,
S. McKeen ,
A. Bandy ,
D. Thornton ,
F. Rowland ,
D. Blake ,
Potential impact of iodine on tropospheric levels of ozone and other critical oxidants.
J. Geophys. Res. 1996
, 101, 2135.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
K. A. Read ,
A. S. Mahajan ,
L. J. Carpenter ,
M. J. Evans ,
B. V. E. Faria ,
D. E. Heard ,
J. R. Hopkins ,
J. D. Lee ,
Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean.
Nature 2008
, 453, 1232.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
S. Solomon ,
R. R. Garcia ,
A. R. Ravishankara ,
On the role of iodine in ozone depletion.
J. Geophys. Res. 1994
, 99, 20491.
| Crossref | GoogleScholarGoogle Scholar |
[20]
L. J. Carpenter ,
C. E. Jones ,
R. M. Dunk ,
K. E. Hornsby ,
J. Woeltjen ,
Air–sea fluxes of biogenic bromine from the tropical and North Atlantic Ocean.
Atmos. Chem. Phys. 2009
, 9, 1805.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
C. D. O’Dowd ,
B. Langmann ,
S. Varghese ,
C. Scannell ,
D. Ceburnis ,
M. C. Facchini ,
A combined organic-inorganic sea-spray source function.
Geophys. Res. Lett. 2008
, 35, L01801.
| Crossref | GoogleScholarGoogle Scholar |
[22]
J. Methven ,
B. Hoskins ,
The advection of high resolution tracers by low resolution winds.
J. Atmos. Sci. 1999
, 56, 3262.
| Crossref | GoogleScholarGoogle Scholar |
[23]
J. Methven ,
M. Evans ,
P. Simmonds ,
G. Spain ,
Estimating relationships between air-mass origin and chemical composition.
J. Geophys. Res. 2001
, 106, 5005.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
J. Methven ,
S. R. Arnold ,
F. M. O’Connor ,
H. Barjat ,
K. Dewey ,
J. Kent ,
N. Brough ,
Estimating photochemically produced ozone throughout a domain using flight data and a Lagrangian model.
J. Geophys. Res. 2003
, 108, 4271.
| Crossref | GoogleScholarGoogle Scholar |
[25]
A. Colette ,
G. Ancellet ,
L. Menut ,
S. R. Arnold ,
A Lagrangian analysis of the impact of transport and transformation on the ozone stratification observed in the free troposphere during the ESCOMPTE campaign.
Atmos. Chem. Phys. 2006
, 6, 3487.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
V. Gros ,
J. Williams ,
J. A. van Aardenne ,
G. Salisbury ,
R. Hofmann ,
M. G. Lawrence ,
R. von Kuhlmann ,
J. Lelieveld ,
Origin of anthropogenic hydrocarbons and halocarbons measured in the summertime European outflow (on Crete in 2001).
Atmos. Chem. Phys. 2003
, 3, 1223.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
J. E. Mak ,
C. A. M. Brenninkmeijer ,
Compressed-air sample technology for isotopic analysis of atmospheric carbon-monoxide.
J. Atmos. Ocean. Technol. 1994
, 11, 425.
| Crossref | GoogleScholarGoogle Scholar |
[28]
S. Taddei ,
P. Toscano ,
B. Gioli ,
A. Matese ,
F. Miglietta ,
F. P. Vaccari ,
A. Zaldei ,
T. Custer ,
J. Williams ,
Carbon dioxide and acetone air–sea fluxes over the Southern Atlantic.
Environ. Sci. Technol. 2009
, 43, 5218.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
L. Hoffmann ,
I. Peeken ,
K. Lochte ,
P. Assmy ,
M. Veldhuis ,
Different reactions of Southern Ocean phytoplankton size classes to iron fertilization.
Limnol. Oceanogr. 2006
, 51, 1217.
|
CAS |
[30]
[31]
R. Wanninkhof ,
W. R. McGillis ,
A cubic relationship between air–sea CO2 exchange and wind speed.
Geophys. Res. Lett. 1999
, 26, 1889.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
B. Quack ,
D. W. R. Wallace ,
Air–sea flux of bromoform: controls, rates, and implications.
Global Biogeochem. Cycles 2003
, 17, 1023.
| Crossref | GoogleScholarGoogle Scholar |
[33]
B. Quack ,
G. Petrick ,
I. Peeken ,
K. Nachtigall ,
Oceanic distribution and sources of bromoform and dibromomethane in the Mauritanian upwelling.
J. Geophys. Res. – Oceans 2007
, 112, C100006.
| Crossref | GoogleScholarGoogle Scholar |
[34]
S. L. Manley ,
J. L. de la Cuesta ,
Methyl iodide production from marine phytoplankton cultures.
Limnol. Oceanogr. 1997
, 42, 142.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
M. G. Scarratt ,
R. M. Moore ,
Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum.
Limnol. Oceanogr. 1999
, 44, 703.
|
CAS |
| Crossref |
[36]
J. D. Happell ,
D. W. R. Wallace ,
Methyl iodide in the Greenland/Norwegian Seas and the tropical Atlantic Ocean: evidence for photochemical production.
Geophys. Res. Lett. 1996
, 23, 2105.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[37]
U. Richter ,
D. W. R. Wallace ,
Production of methyl iodide in the tropical Atlantic Ocean.
Geophys. Res. Lett. 2004
, 31, L23S03.
| Crossref | GoogleScholarGoogle Scholar |
[38]
R. Moore ,
O. Zafiriou ,
Photochemical production of methyl iodide in seawater.
J. Geophys. Res. 1994
, 99, 16415.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[39]
R. M. Moore ,
Methyl halide production and loss rates in sea water from field incubation experiments.
Mar. Chem. 2006
, 101, 213.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[40]
A. Colomb ,
V. Gros ,
S. Alvain ,
R. Sarda-Esteve ,
B. Bonsang ,
C. Moulin ,
T. Klüpfel ,
J. Williams ,
Variation of atmospheric volatile organic compounds over the Southern Indian Ocean (30–49°S).
Environ. Chem. 2009
, 6, 70.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[41]
M. Kritz ,
Use of long-lived radon daughters as indicators of exchange between the free troposphere and the marine boundary layer.
J. Geophys. Res. 1983
, 88, 8569.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
G. M. Devine ,
K. S. Carslaw ,
D. J. Parker ,
J. C. Petch ,
The influence of subgrid surface-layer variability on vertical transport of a chemical species in a convective environment.
Geophys. Res. Lett. 2006
, 33, L15807.
| Crossref | GoogleScholarGoogle Scholar |
[43]
E. G. Chapman ,
W. J. Shaw ,
R. C. Easter ,
X. Bian ,
S. J. Ghan ,
Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes.
J. Geophys. Res. 2002
, 107, 4672.
| Crossref | GoogleScholarGoogle Scholar |
[44]
L. J. Carpenter ,
P. S. Liss ,
S. A. Penkett ,
Marine organohalogens in the atmosphere over the Atlantic and Southern Oceans.
J. Geophys. Res. 2003
, 108, 4256.
| Crossref | GoogleScholarGoogle Scholar |
[45]
S. Alvain ,
C. Moulin ,
Y. Dandonneau ,
F. M. Breon ,
Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery.
Deep Sea Res. Part I Oceanogr. Res. Pap. 2005
, 52, 1989.
| Crossref | GoogleScholarGoogle Scholar |
[46]
Y. Dandonneau ,
P.-Y. Deschamps ,
J.-M. Nicolas ,
H. Loisel ,
J. Blanchot ,
Y. Montel ,
F. Thieuleux ,
G. Bécu ,
Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific.
Deep Sea Res. Part II Top. Stud. Oceanogr. 2004
, 51, 303.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[47]
S. Alvain ,
C. Moulin ,
Y. Dandonneau ,
H. Loisel ,
Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view.
Global Biogeochem. Cycles 2008
, 22, GB3001.
| Crossref | GoogleScholarGoogle Scholar |
[48]
S. L. Shaw ,
S. W. Chisholm ,
R. G. Prinn ,
Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton.
Mar. Chem. 2003
, 80, 227.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[49]
S.-M. Li ,
Y. Yokouchi ,
L. A. Barrie ,
K. Muthuramu ,
P. B. Shepson ,
J. W. Bottenheim ,
W. T. Sturges ,
S. Landsberger ,
Organic and inorganic bromine compounds and their composition in the Arctic troposphere during polar sunrise.
J. Geophys. Res. 1994
, 99, 25415.
| Crossref | GoogleScholarGoogle Scholar |
[50]
Y. Zhou ,
R. K. Varner ,
R. S. Russo ,
O. W. Wingenter ,
K. B. Haase ,
R. Talbot ,
B. C. Sive ,
Coastal water source of short-lived halocarbons in New England.
J. Geophys. Res. 2005
, 110, D21302.
| Crossref | GoogleScholarGoogle Scholar |
[51]
[52]
W. Groszko ,
R. M. Moore ,
Ocean-atmosphere exchange of methyl bromide: NW Atlantic and Pacific Ocean studies.
J. Geophys. Res. 1998
, 103, 16737.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[53]
D. B. King ,
J. H. Butler ,
S. A. Montzka ,
S. A. Yvon-Lewis ,
J. W. Elkins ,
Implications of methyl bromide supersaturations in the temperate North Atlantic Ocean.
J. Geophys. Res. 2000
, 105, 19763.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[54]
D. B. King ,
J. H. Butler ,
S. A. Yvon-Lewis ,
S. A. Cotton ,
Predicting oceanic methyl bromide saturation from SST.
Geophys. Res. Lett. 2002
, 29, 2199.
| Crossref | GoogleScholarGoogle Scholar |
[55]
A. McCulloch ,
Chloroform in the environment: occurrence, sources, sinks and effects.
Chemosphere 2003
, 50, 1291.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[56]
A. Kettle ,
M. Andreae ,
Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models.
J. Geophys. Res. 2000
, 105, 26793.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[57]
[58]
P. S. Liss ,
A. D. Hatton ,
G. Malin ,
P. D. Nightingale ,
S. M. Turner ,
Marine sulphur emissions.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997
, 352, 159.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[59]
A. Gabric ,
N. Murray ,
L. Stone ,
M. Kohl ,
Modeling the production of dimethylshulfide during a phytoplankton bloom.
J. Geophys. Res. – Oceans 1993
, 98, 22805.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[60]
G. Malin ,
G. O. Kirst ,
Algal production of dimethyl sulfide and its atmospheric role.
J. Phycol. 1997
, 33, 889.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[61]
S. Belviso ,
S. K. Kim ,
F. Rassoulzadegan ,
B. Krajka ,
B. C. Nguyen ,
N. Mihalopoulos ,
P. Buatmenard ,
Production of dimethylsulfonium propionate (DMSP) and dimethylsulfide (DMS) by a microbial foodweb.
Limnol. Oceanogr. 1990
, 35, 1810.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[62]
R. Simó ,
Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links.
Trends Ecol. Evol. 2001
, 16, 287.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[63]
N. Yassaa ,
C. A. K. Lochte ,
I. Peeken ,
J. Williams ,
Development and application of a headspace solid-phase microextraction and gas chromatography/mass spectrometry method for the determination of dimethylsulfide emitted by eight marine phytoplankton species.
Limnol. Oceanogr. Methods 2006
, 4, 374.
|
CAS |
[64]
C. Evans ,
S. D. Archer ,
S. Jacquet ,
W. H. Wilson ,
Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population.
Aquat. Microb. Ecol. 2003
, 30, 207.
| Crossref | GoogleScholarGoogle Scholar |
[65]
M. O. Andreae ,
Dimethylsulfide in the water column and the sediment porewaters of the Peru upwelling area.
Limnol. Oceanogr. 1985
, 30, 1208.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[66]
D. Franklin ,
J. A. Poulton ,
M. Steinke ,
J. Young ,
I. Peeken ,
G. Malin ,
Dimethylsulphide, DMSP-lyase activity and microplankton community structure inside and outside of the Mauritanian upwelling.
Prog. Oceanogr. 2009
, 83, 134.
| Crossref | GoogleScholarGoogle Scholar |
[67]
J. M. Roberts ,
F. C. Fehsenfeld ,
S. C. Liu ,
M. J. Bollinger ,
C. Hahn ,
D. L. Albritton ,
R. E. Sievers ,
Measurements of aromatic hydrocarbon ratios and NOx concentrations in the rural troposphere: observation of air mass photochemical aging and NOx removal.
Atmos. Environ. 1984
, 18, 2421.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[68]
A. Heiden ,
K. Kobel ,
M. Komenda ,
R. Koppmann ,
M. Shao ,
J. Wildt ,
Toluene emissions from plants.
Geophys. Res. Lett. 1999
, 26, 1283.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[69]
M. L. White ,
R. S. Russo ,
Y. Zhou ,
J. L. Ambrose ,
K. Haase ,
E. K. Frinak ,
R. K. Varner ,
O. W. Wingenter ,
Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States?
Atmos. Chem. Phys. 2009
, 9, 81.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[70]
A. U. Bracher ,
M. Vountas ,
T. Dinter ,
J. P. Burrows ,
R. Röttgers ,
I. Peeken ,
Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data.
Biogeosciences 2009
, 6, 751.
| Crossref | GoogleScholarGoogle Scholar |