Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Manufactured nanoparticles in the environment

Jamie R. Lead
+ Author Affiliations
- Author Affiliations

School of Geography, Earth and Environmental Sciences (GEES), University of Birmingham, B15 2TT, UK. Email: j.r.lead@bham.ac.uk




Jamie Lead is Professor of Environmental Nanoscience and Director of the UK Facility for Environmental Nanoscience Analysis and Characterisation (FENAC), at the University of Birmingham, UK. His research interests encompass both natural and manufactured nanoparticles. In the former area, he is interested in quantifying how particle structure affects their environmental function in pollutant behaviour. In the latter area, he is interested in nanoparticle synthesis and physico-chemical characterisation, environmental chemistry and transport and their ecotoxicology.

Environmental Chemistry 7(1) 1-2 https://doi.org/10.1071/EN09139
Submitted: 1 November 2009  Accepted: 18 December 2009   Published: 22 February 2010

Environmental context. Nanotechnology is a very important industry which may be socially transformative, but produces nanomaterials (NMs) which have a potential but poorly characterised risk to the environment. This Research Front describes new research investigating NM environmental chemistry, particularly in relation to ecotoxicology. This Research Front shows some of the most exciting research undertaken currently and fits within a dynamic research program, which is global in scope and which attempts to unravel these complex areas.


References


[1]   S. J. Klaine , P. J. J. Alvarez , G. E. Batley , T. F. Fernandes , R. D. Handy , D. Lyon , S. Mahendra , M. J. McLaughlin , J. R. Lead , Nanomaterials in the environment: fate, behaviour, bioavailability and effects. Environ. Toxicol. Chem. 2008 , 27,  1825.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[2]   J. R. Lead , K. J. Wilkinson , Natural aquatic colloids: current knowledge and future trends. Environ. Chem. 2006 , 3,  159.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   Lead J. R., Smith E. (Eds), Environmental and human health effects of manufactured nanoparticles 2009 (Wiley: Chichester, UK).

[4]   B. Nowack , T. D. Buchelli , Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007 , 150,  5.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[5]   M. Auffan , J. Rose , J.-Y. Bottero , G. V. Lowry , J.-P. Jolivet , M. R. Wiesner , Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009 , 4,  634.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   W. X. Zhang , Nanoscale iron particles for environmental remediation; an overview. J. Nanopart. Res. 2003 , 5,  323.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   Y. Song , X. Li , X. Du , Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur. Respir. J. 2009 , 34,  559.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[8]   D. M. Aruguete , M. F. Hochella , Bacteria–nanoparticle interactions and their environmental implications. Environ. Chem. 2010 , 7,  3.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   K. L. Chen , B. A. Smith , W. P. Ball , D. H. Fairbrother , Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes. Environ. Chem. 2010 , 7,  10.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   D. M. Aruguete , J. S. Guest , W. W. Yu , N. G. Love , M. F. Hochella , Interaction of CdSe/CdS core-shell quantum dots and Pseudomonas aeruginosa. Environ. Chem. 2010 , 7,  28.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   T. M. Scown , R. M. Goodhead , B. D. Johnston , J. Moger , M. Baalousha , J. R. Lead , R. van Aerle , T. Iguchi , C. R. Tyler , Assessment of cultured fish hepatocytes for studying cellular uptake and (eco)toxicity of nanoparticles. Environ. Chem. 2010 , 7,  36.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   N. J. Rogers , N. M. Franklin , S. C. Apte , G. E. Batley , B. M. Angel , J. R. Lead , M. Baalousha , Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ. Chem. 2010 , 7,  50.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   R. F. Domingos , C. Peyrot , K. J. Wilkinson , Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate. Environ. Chem. 2010 , 7,  61.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   J. A. Gallego-Urrea , J. Tuoriniemi , T. Palander , M. Hassellöv , Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using Nanoparticle Tracking Analysis. Environ. Chem. 2010 , 7,  67.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   K. L. Plathe , F. von der Kammer , M. Hassellöv , J. Moore , M. Murayama , T. Hofmann , M. F. Hochella , Using FlFFF and aTEM to determine trace metal–nanoparticle associations in riverbed sediment. Environ. Chem. 2010 , 7,  82.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1