Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Investigating biogenic heterogeneity in coastal sediments with two-dimensional measurements of iron(II) and sulfide

David Robertson A , David T. Welsh A and Peter R. Teasdale A B
+ Author Affiliations
- Author Affiliations

A Australian Rivers Institute, Griffith University, Gold Coast campus, Qld 4222, Australia.

B Corresponding author. Email: p.teasdale@griffith.edu.au

Environmental Chemistry 6(1) 60-69 https://doi.org/10.1071/EN08059
Submitted: 4 September 2008  Accepted: 16 December 2008   Published: 3 March 2009

Environmental context. Microbial respiration generally occurs in distinct layers within coastal sediment, producing high porewater iron or sulfide concentrations, although this layering is dramatically modified by the activities of sediment-dwelling organisms. The present study describes use of a new technique to simultaneously measure two-dimensional concentrations of porewater iron and sulfide at millimetre resolution, allowing the patchiness of patterns of microbial respiration in sediment to be clearly observed. The measurements generally supported a conceptual model predicting the effects of animal burrows and seagrass roots on the porewater iron and sulfide distributions, although the addition of organic matter provided some unexpected observations that require further investigation.

Abstract. One of the most powerful predictive tools in sediment biogeochemistry is the electron acceptor layering model, which describes the order in which oxidised compounds are reduced by successions of respiring microbial populations, and how this layering is influenced by benthic macro-organism activity. However, techniques allowing convenient determination of heterogeneous distributions of reduced substances, such as iron(II) and sulfide, have been lacking. A combined diffusive gradients in thin films–diffusive equilibrium in thin films technique was used to quantitatively measure the two-dimensional iron(II) and sulfide distributions at high resolution in the vicinity of various sediment features, including macrofauna burrows, particulate organic matter and macrophyte roots. Substantial heterogeneity was observed for both analytes in all probes, especially in the vicinity of seagrass roots and particulate organic matter. Measured distributions tended to follow the general patterns predicted by the tertiary electron acceptor layering model. However, there was unexpected overlap of sulfide and iron(II) distributions at the millimetre to centimetre scale in several samples from different sediments, notably the more complex sediments containing particulate organic matter and seagrass roots. The cause of such overlap is unclear and further study is necessary to elucidate how such distributions can occur.

Additional keywords: benthic macrofauna, biogeochemistry, high-resolution measurements, microcosm, simultaneous DET and DGT.


Acknowledgements

The present research was supported by a grant from the Australian Research Council’s Discovery Projects funding scheme (project no. DP0559935). David Robertson is grateful to the Australian Rivers Institute for financial assistance in the form of an Honours Bursary and an Honours publication scholarship. The relevant and detailed comments on the manuscript by two anonymous reviewers are appreciated.


References


[1]   Fenchel T., King G., Blackburn T., in Bacterial Biogeochemistry: the Ecophysiology of Mineral Cycling 1998, p. 307 (Academic Press: San Diego, CA).

[2]   E. Kristensen , Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 2000 , 426,  1.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   Aller R., The Effects of Macrobenthos on Chemical Properties of Marine Sediment and Overlying Water, in Animal–Sediment Relations. The Biogenic Alteration of Sediments (Eds P. McCall, M. Tevesz) 1982, pp. 53–102 (Plenum: New York).

[4]   S. K. Konovalov , G. W. Luther , M. Yucel , Porewater redox species and processes in the Black Sea sediments. Chem. Geol. 2007 , 245,  254.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   C. Laskov , C. Herzog , J. Lewandowski , M. Hupfer , Miniaturised photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron and sulfate in pore water of freshwater sediments. Limnol. Oceanogr. Methods 2007 , 5,  63.
        |  CAS |  open url image1

[6]   E. Viollier , C. Rabouille , S. Apitz , E. Breuer , G. Chaillou , K. Dedieu , Y. Furukawa , C. Grenz , P. Hall , F. Janssen , Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey. J. Exp. Mar. Biol. Ecol. 2003 , 285–286,  5.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   P. Anschutz , B. Sundby , L. Lefrancois , G. W. Luther III , A. Mucci , Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments. Geochim. Cosmochim. Acta 2000 , 64,  2751.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[8]   N. Revsbech , B. Barker Jorgensen , T. Blackburn , Oxygen in the sea bottom measured with a microelectrode. Science 1980 , 207,  1355.
        |  CAS |  open url image1

[9]   G. W. Luther , P. J. Brendel , B. L. Lewis , N. Silverberg , D. B. Nuzzio , Simultaneous measurement of O2, Mn, Fe, I, and S(-II) in marine pore waters with a solid-state voltammetric microelectrode. Limnol. Oceanogr. 1998 , 43,  325.
        |  CAS |  open url image1

[10]   R. Glud , N. Ramsing , J. Gundersen , I. Klimant , Planar optodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar. Ecol. Prog. Ser. 1996 , 140,  217.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   K. Oguri , H. Kitazato , R. N. Glud , Platinum octaethylporphyrin based planar optodes combined with an UV-LED excitation light source: an ideal tool for high-resolution O2 imaging in O2-depleted environments. Mar. Chem. 2006 , 100,  95.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[12]   Q. Zhu , R. C. Aller , Y. Fan , A new ratiometric, planar fluorosensor for measuring high-resolution, two-dimensional pCO2 distributions in marine sediments. Mar. Chem. 2006 , 101,  40.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   Q. Zhu , R. C. Aller , Y. Fan , Two-dimensional pH distributions and dynamics in bioturbated marine sediments. Geochim. Cosmochim. Acta 2006 , 70,  4933.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   P. Teasdale , S. Hayward , W. Davison , In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry. Anal. Chem. 1999 , 71,  2186.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[15]   A. Stockdale , W. Davison , H. Zhang , High-resolution two-dimensional quantitative analysis of phosphorus, vanadium and arsenic, and qualitative analysis of sulphide, in a freshwater sediment. Environ. Chem. 2008 , 5,  143.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[16]   C. Devries , F. Wang , In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters. Environ. Sci. Technol. 2003 , 37,  792.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   O. Nielsen , E. Kristensen , M. Holmer , Impact of Arenicola marina (Polychaeta) on sediment sulfur dynamics. Aquat. Microb. Ecol. 2003 , 33,  95.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   D. Jezequel , R. Brayner , E. Metzger , E. Viollier , F. Prevot , F. Fievet , Two-dimensional determination of dissolved iron and sulfur species in marine sediment pore-waters by thin-film based imaging. Thau lagoon (France). Estuar. Coast. Shelf Sci. 2007 , 72,  420.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   D. Robertson , P. R. Teasdale , D. T. Welsh , A novel gel-based technique for the high resolution, two-dimensional determination of iron(II) and sulfide in sediment. Limnol. Oceanogr. Methods 2008 , 6,  502.
         open url image1

[20]   H. Zhang , W. Davison , Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 1995 , 67,  3391.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   Y.-H. Li , S. Gregory , Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 1974 , 38,  703.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   Davison W., Fones G., Harper M., Teasdale P., Zhang H., in Dialysis, DET and DGT: In Situ Diffusional Techniques for Studying Water, Sediments and Soils (Eds J. Buffle, G. Horvai) 2000, pp. 495–569 (Wiley: New York).

[23]   C. Naylor , W. Davison , M. Motelica-Heino , G. A. Van Den Berg , L. M. Van Der Heijdt , Potential kinetic availability of metals in sulphidic freshwater sediments. Sci. Total Environ. 2006 , 357,  208.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   R. J. K. Dunn , C. J. Lemckert , P. R. Teasdale , D. T. Welsh , Distribution of nutrients in surface and sub-surface sediments of Coombabah Lake, southern Moreton Bay (Australia). Mar. Pollut. Bull. 2007 , 54,  606.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[25]   S. Forster , G. Graf , Continuously measured changes in redox potential influenced by oxygen penetrating from burrows of Callianassa subterranea. Hydrobiologia 1992 , 235–236,  527.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   F. Wenzhöfer , R. N. Glud , Small-scale spatial and temporal variability in coastal benthic O. Limnol. Oceanogr. 2004 , 49,  1471.
         open url image1

[27]   D. Rickard , The solubility of FeS. Geochim. Cosmochim. Acta 2006 , 70,  5779.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[28]   D. Rickard , G. W. Luther , Chemistry of iron sulfides. Chem. Rev. 2007 , 107,  514.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[29]   W. Davison , N. Phillips , B. Tabner , Soluble iron sulfide species in natural waters: reappraisal of their stoichiometry and stability constants. Aquat. Sci. 1999 , 61,  23.
        |  CAS | | Crossref |  open url image1

[30]   E. D. Burton , L. A. Sullivan , R. T. Bush , B. Powell , Iron sulfide and trace element behaviour in sediments of Coombabah Lake, southern Moreton Bay (Australia). Mar. Pollut. Bull. 2008 , 56,  1353.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[31]   H. Stahl , A. Glud , C. R. Schroeder , I. Klimant , A. Tengberg , R. N. Glud , Time-resolved pH imaging in marine sediments with a luminescent planar optode. Limnol. Oceanogr. Methods 2006 , 4,  336.
        |  CAS |  open url image1

[32]   O. Pedersen , J. Borum , C. Duarte , M. Fortes , Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Mar. Ecol. Prog. Ser. 1998 , 169,  283.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   M. S. Frederiksen , R. N. Glud , Oxygen dynamics in the rhizosphere of Zostera marina: a two-dimensional planar optode study. Limnol. Oceanogr. 2006 , 51,  1072.
         open url image1

[34]   M. F. Isaksen , K. Finster , Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar. Ecol. Prog. Ser. 1996 , 137,  187.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   L. B. Nielsen , K. Finster , D. T. Welsh , A. Donelly , R. A. Herbert , R. de Wit , B. A. A. Lomstein , Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Environ. Microbiol. 2001 , 3,  63.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[36]   E. Kristensen , D. Alongi , Control by fiddler crabs (Uca vocans) and plant roots (Avicennia marina) on carbon, iron, and sulfur biogeochemistry in mangrove sediment. Limnol. Oceanogr. 2006 , 51,  1557.
        |  CAS |  open url image1

[37]   M. Motelica-Heino , C. Naylor , H. Zhang , W. Davison , Simultaneous release of metals and sulfide in lacustrine sediment. Environ. Sci. Technol. 2003 , 37,  4374.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[38]   B. Gribsholt , J. Kostka , E. Kristensen , Impact of fiddler crabs and plant roots on sediment biogeochemistry in a Georgia saltmarsh. Mar. Ecol. Prog. Ser. 2003 , 259,  237.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   W. Davison , H. Zhang , G. Grime , Performance characteristics of gel probes used for measuring the chemistry of pore waters. Environ. Sci. Technol. 1994 , 28,  1623.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[40]   M. Harper , W. Davison , W. Tych , Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: dialysis and DET. Environ. Sci. Technol. 1997 , 31,  3110.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   M. Harper , W. Davison , W. Tych , DIFS – a modelling and simulation tool for DGT-induced trace metal remobilisation in sediments and soils. Environ. Model. Softw. 2000 , 15,  55.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1