Partitioning of polynuclear aromatic hydrocarbons into water from biodiesel fuel mixtures
Colin S. Chen A B , Yun-Wei Lai A and Chien-Jung Tien AA Institute of Biotechnology, National Kaohsiung Normal University, Yanchao, Kaohsiung 824, Taiwan.
B Corresponding author. Email: cschen@nknucc.nknu.edu.tw
Environmental Chemistry 5(6) 435-444 https://doi.org/10.1071/EN08051
Submitted: 10 August 2008 Accepted: 17 November 2008 Published: 18 December 2008
Environmental context. The dwindling fossil fuel sources have led to a major interest in expanding the use of bioenergy. While biodiesel is moving towards the mainstream as an alternative source of energy, a thorough understanding of the potential impact and risk posed by spills of biodiesel and biodiesel fuel mixtures should be obtained. We present new data here that will allow the prediction of biodiesel behaviour and the extent of contamination in soils and groundwater in the event of such a spill.
Abstract. Partition coefficients of polynuclear aromatic hydrocarbons (PAHs) between biodiesel fuel mixtures (i.e. B1, B5, and B20) and water were determined by the frequently applied estimation method of Raoult’s law. The experimental partition coefficients were compared with calculation by polyparameter linear free energy relationship (PP-LFER) approaches. Deviations from poor recovery of PAHs from the aqueous phase in partition experiments and parameters in the PP-LFER equation are discussed. The results suggest that the extent of deviation from ideal behaviour for biodiesel–water partitioning is relatively small (i.e. errors remain within a factor of two). The concentrations of PAHs in water in equilibrium with these biodiesel fuel mixtures, estimated from the model presented, may be considered as a reasonable approximation for most field-scale applications.
Additional keywords: polyparameter linear free energy relationship, Raoult’s law.
Acknowledgements
The present study was supported by fund from National Science Council of Taiwan (Project No. 97–2313-B-017–001-MY3).
[1]
A. Lapinskiene ,
P. Martinkus ,
V. Rebzdaite ,
Eco-toxicological studies of diesel and biodiesel fuels in aerated soil.
Environ. Pollut. 2006
, 142, 432.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[2]
J. A. DeMello ,
C. A. Carmichael ,
E. E. Peacock ,
R. K. Nelson ,
J. S. Arey ,
C. M. Reddy ,
Biodegradation and environmental behavior of biodiesel mixtures in the sea: an initial study.
Mar. Pollut. Bull. 2007
, 54, 894.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[3]
R. C. Prince ,
C. Haitmanek ,
C. C. Lee ,
The primary aerobic biodegradation of biodiesel B20.
Chemosphere 2008
, 71, 1446.
|
CAS |
PubMed |
[4]
P. V. Cline ,
J. J. Delfino ,
P. S. C. Rao ,
Partitioning of aromatic constituents into water from gasoline and other complex solvent mixtures.
Environ. Sci. Technol. 1991
, 25, 914.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
R. Johnson ,
J. F. Pankow ,
D. Bender ,
C. Price ,
J. S. Zogorski ,
MTBE, to what extent will past releases contaminate community water supply wells.
Environ. Sci. Technol. 2000
, 34, 2A.
[6]
J. S. Arey ,
P. M. Gschwend ,
Estimating partition coefficients for fuel–water systems: developing linear solvation energy relationships using linear solvent strength theory to handle mixtures.
Environ. Sci. Technol. 2005
, 39, 2702.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[7]
S. Banerjee ,
Solubility of organic mixtures.
Environ. Sci. Technol. 1984
, 18, 587.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[8]
L. S. Lee ,
M. Hagwell ,
J. J. Delfino ,
P. S. C. Rao ,
Partitioning of polycyclic aromatic hydrocarbons from diesel fuel into water.
Environ. Sci. Technol. 1992
, 26, 2104.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[9]
L. S. Lee ,
P. S. C. Rao ,
I. Okuda ,
Equilibrium partitioning of polycyclic aromatic hydrocarbons from coal tar into water.
Environ. Sci. Technol. 1992
, 26, 2110.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
C. S. Chen ,
J. J. Delfino ,
P. S. C. Rao ,
Partitioning of organic and inorganic components from motor oil into water.
Chemosphere 1994
, 28, 1385.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[11]
S. B. F. Reckhorn ,
L. V. Zuquette ,
P. Grathwohl ,
Experimental investigations of oxygenated gasoline dissolution.
J. Environ. Eng. 2001
, 127, 208.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[12]
C. S. Chen ,
Y.-W. Lai ,
C.-J. Tien ,
Partitioning of aromatic and oxygenated constituents into water from regular and ethanol-blended gasolines.
Environ. Pollut. 2008
, 156, 988.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
S. H. Yalkowsky ,
S. C. Valvani ,
Solubility and partitioning I: solubility of non-electrolytes in water.
J. Pharm. Sci. 1980
, 69, 912.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
K.-U. Goss ,
R. P. Schwarzenbach ,
Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds.
Environ. Sci. Technol. 2001
, 35, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[15]
T. C. Schmidt ,
P. Kleinert ,
C. Stengel ,
K.-U. Goss ,
S. B. Haderlein ,
Polar fuel constituents: compound identification and equilibrium partitioning between non-aqueous phase liquids and water.
Environ. Sci. Technol. 2002
, 36, 4074.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
S. Endo ,
T. C. Schmidt ,
Prediction of partitioning between complex organic mixtures and water: application of polyparameter linear free energy relationships.
Environ. Sci. Technol. 2006
, 40, 536.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
M. H. Abraham ,
Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes.
Chem. Soc. Rev. 1993
, 22, 73.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[18]
M. H. Abraham ,
J. Andonian-Haftvan ,
G. S. Whiting ,
A. Leo ,
R. S. Taft ,
Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapours in water at 298K and a new method for its determination.
J. Chem. Soc. Perkin Trans. 1994
, 2, 1777.
| Crossref | GoogleScholarGoogle Scholar |
[19]
M. H. Abraham ,
C. F. Poole ,
S. K. Poole ,
Classification of stationary phases and other materials by gas chromatography.
J. Chromatogr. A 1999
, 842, 79.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[20]
M. H. Abraham ,
A. Ibrahim ,
A. M. Zissimos ,
Determination of sets of solute descriptors from chromatographic measurements.
J. Chromatogr. A 2004
, 1037, 29.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
J. A. Platts ,
D. Butina ,
M. H. Abraham ,
A. Hersey ,
Estimation of molecular linear free energy relation descriptors using a group contribution approach.
J. Chem. Inf. Comput. Sci. 1999
, 39, 835.
|
CAS |
[22]
J. S. Arey ,
W. H. Green ,
P. M. Gschwend ,
The electrostatic origin of Abraham’s solute polarity parameter.
J. Phys. Chem. B 2005
, 109, 7564.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[23]
[24]
W. Yuan ,
A. C. Hansen ,
Q. Zhang ,
Vapor pressure and normal boiling point predictions for pure methyl esters and biodiesel fuels.
Fuel 2005
, 84, 943.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
C. T. Chiou ,
D. W. Schmedding ,
M. Manes ,
Partitioning of organic compounds in octanol–water systems.
Environ. Sci. Technol. 1982
, 16, 4.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
S. Banerjee ,
S. H. Yalkowsky ,
S. C. Valvani ,
Water solubility and octanol/water partition coefficients of organics. Limitations of the solubility–partition coefficient correlation.
Environ. Sci. Technol. 1980
, 14, 1227.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[27]
M. M. Miller ,
S. P. Wasik ,
G.-L. Huang ,
W.-Y. Shiu ,
D. Mackay ,
Relationships between octanol/water partition coefficient and aqueous solubility.
Environ. Sci. Technol. 1985
, 19, 522.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[28]
D. R. Burris ,
W. G. MacIntyre ,
Water solubility behavior of binary hydrocarbon mixtures.
Environ. Toxicol. Chem. 1985
, 4, 371.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[29]