Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Assessing toxicity of mining effluents: equilibrium- and kinetics-based metal speciation and algal bioassay

Yamini Gopalapillai A B , Chuni L. Chakrabarti A D and David R. S. Lean C
+ Author Affiliations
- Author Affiliations

A Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.

B Present address: University of Guelph, Land Resource Science, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.

C Department of Biology, University of Ottawa, 30 Marie Currie Private, PO Box 450, Station A, Ottawa, ON, K1N 6N5, Canada.

D Corresponding author. Email: chuni_chakrabarti@carleton.ca

Environmental Chemistry 5(4) 307-315 https://doi.org/10.1071/EN08027
Submitted: 23 April 2008  Accepted: 15 July 2008   Published: 19 August 2008

Environmental context. The release of mining effluents exposes natural waters to excess metals and thereby threatens both human and environmental health. The present study explores the toxicity of aqueous mining effluents collected from a mining area in Sudbury (Ontario, Canada), using two different methods for determination of metal speciation, and an algal toxicity study. The results show reasonable correlation between metal speciation and the observed toxicity and suggest the importance of taking into account other factors related to water quality criteria such as nutrient concentrations, diluent water and presence of other toxic metals that can greatly influence the toxicological result.

Abstract. The present study explores the toxicity of aqueous mining and municipal effluents from the Sudbury area (Canada) using equilibrium- and kinetics-based estimates of metal speciation and chronic toxicity studies using algae (Pseudokirchneriella subcapitata). Free metal ion concentration was determined by the Ion Exchange Technique (IET) and a computer speciation code, Windermere Humic Aqueous Model (WHAM) VI. Labile metal concentration was determined using the Competing Ligand Exchange Method. In general, no correlation was found between the observed IC25 (concentration of test substance that inhibits growth of organism by 25%) and the [Ni]labile, [Ni2+]IET or [Ni2+]WHAM, probably because of contributions by other metals such as Cu and Zn being also significant. Reasonable correlation (r2 = 0.7575) was found when the observed toxicity was compared with the sum of free metal ions of Cu, Ni, and Zn predicted by WHAM. The results of the present study reveal the importance of taking into account other factors related to water quality criteria such as nutrient concentrations, diluent water, and the presence of other toxic metals, which greatly influence the toxicological result in complex, multi-metal contaminated waters.

Additional keywords: algae, bioavailability, chronic toxicity, metal speciation, mining effluents.


Acknowledgements

The authors gratefully acknowledge the financial supports of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the NSERC Metals in the Human Environment – Research Network (MITHE-RN). The authors also wish to thank Dr Emmanuel Yumvihoze (University of Ottawa) for measuring phosphate levels in the samples. Y.G. received a graduate scholarship from Carleton University Emmette Dunne Fund and Ontario Graduate Scholarship in Science and Technology.


References


[1]   Stumm W., Morgan J. J., Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd edn 1996 (Wiley: New York).

[2]   Metal Mining Effluent Regulations, Canada Gazette, Part II 2002, p. 1411 (Department of Fisheries and Oceans Canada: Ottawa, ON).

[3]   B. T. A. Muyssen , K. V. Brix , D. K. DeForest , C. R. Janssen , Nickel essentiality and homeostasis in aquatic organisms. Environ. Rev. 2004 , 12,  113.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   M. W. G. de Bolster , Glossary of terms used in bioinorganic chemistry (IUPAC recommendations 1997). Pure Appl. Chem. 1997 , 69,  1251.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   D. Templeton , F. Ariese , R. Cornelis , L. G. Danielson , H. Muntau , H. Van Leeuwen , R. Lobinski , Guidelines for terms related to chemical speciation and fractionation of elements: definitions, structural aspects and methodological approaches (IUPAC recommendations 2000). Pure Appl. Chem. 2000 , 72,  1453.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   Morel F. M. M., Principles of Aquatic Chemistry 1983 (Wiley-Interscience: New York).

[7]   B. Vigneault , P. G. C. Campbell , Uptake of cadmium by freshwater green algae: effects of pH and aquatic humic substances. J. Phycol. 2005 , 41,  55.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   Morel F. M. M., Hering J. G., Principles and Applications of Aquatic Chemistry 1993 (Wiley-Interscience: New York).

[9]   B. Vigneault , A. Percot , M. Lafleur , P. G. C. Campbell , Permeability changes in model and phytoplankton membranes in the presence of aquatic humic substances. Environ. Sci. Technol. 2000 , 34,  3907.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   C. Lamelas , V. I. Slaveykova , Comparison of Cd(II), Cu(II), and Pb(II) biouptake by green algae in the presence of humic acid. Environ. Sci. Technol. 2007 , 41,  4172.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[11]   R. Sutton , G. Sposito , Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 2005 , 39,  9009.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[12]   E. R. Unsworth , K. W. Warnken , H. Zhang , W. Davison , F. Black , J. Buffle , J. Cao , R. Cleven , J. Galceran , P. Gunkel , E. Kalis , D. Kistler , H. P. van Leeuwen , M. Martin , S. Noël , Y. Nur , N. Odzak , J. Puy , W. V. Riemsdijk , L. Sigg , E. Temminghoff , M.-L. Tercier-Waeber , S. Toepperwien , R. M. Town , L. Weng , H. Xue , Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ. Sci. Technol. 2006 , 40,  1942.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[13]   S. C. Apte , G. E. Batley , K. C. Bowles , P. L. Brown , N. Creighton , L. T. Hales , R. V. Hyne , M. Julli , S. J. Markich , F. Pablo , N. J. Rogers , J. L. Stauber , K. Wilde , A comparison of copper speciation measurements with the toxic response of three sensitive freshwater organisms. Environ. Chem. 2005 , 2,  320.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   P. G. C. Campbell , O. Errécalde , C. Fortin , V. P. Hiriart , B. Vigneault , Metal bioavailability to phytoplankton – applicability of the Biotic Ligand Model. Comp. Biochem. Phys. C 2002 , 133,  189.
         open url image1

[15]   G. E. Batley , S. C. Apte , J. L. Stauber , Speciation and bioavailability of trace metals in water: progress since 1982. Aust. J. Chem. 2004 , 57,  903.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   Campbell P. G. C., Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995 (Wiley: Chichester, UK).

[17]   G. K. Pagenkopf , Gill surface interaction model for trace metal toxicity to fish: role of complexation, pH, and water hardness. Environ. Sci. Technol. 1983 , 17,  342.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   US Environmental Protection Agency, Aquatic Life Ambient Freshwater Quality Criteria Copper, 2007 Revision 2007 (US EPA Office of Water: Washington, DC).

[19]   Y. Gopalapillai , I. I. Fasfous , J. D. Murimboh , T. Yapici , P. Chakraborty , C. L. Chakrabarti , Determination of free nickel ion concentrations using the ion exchange technique: application to aqueous mining and municipal effluents. Aquat. Geochem. 2008 , 14,  99.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   Helfferich F., Ion Exchange 1962 (McGraw-Hill: New York).

[21]   F. C. Cantwell , J. S. Nielson , S. E. Hrudey , Free nickel ion concentration in sewage by an ion exchange column–equilibration method. Anal. Chem. 1982 , 54,  1498.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[22]   C. Fortin , P. G. C. Campbell , An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): application to complex aqueous media. Int. J. Environ. Anal. Chem. 1998 , 72,  173.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[23]   Apte S. C., Batley G. E., Trace metal speciation of labile chemical species in natural waters and sediments: non-electrochemical approaches, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995 (Wiley: Chichester, UK).

[24]   R. Mandal , M. S. A. Salam , J. Murimboh , N. M. Hassan , C. L. Chakrabarti , M. H. Back , D. C. Gregoire , W. H. Schroeder , Effect of the competition of copper and cobalt on the lability of Ni(II)-organic ligand complexes, Part II: in freshwaters (Rideau River surface waters). Anal. Chim. Acta 1999 , 395,  323.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   Y. Lu , C. L. Chakrabarti , M. H. Back , D. C. Gregoire , W. H. Schroeder , Kinetic studies of aluminium and zinc speciation in river water and snow. Anal. Chim. Acta 1994 , 293,  95.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   D. L. Olson , M. S. Shuman , Copper dissociation from estuarine humic materials. Geochim. Cosmochim. Acta 1985 , 49,  1371.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   R. Mandal , N. M. Hassan , J. Murimboh , C. L. Chakrabarti , M. H. Back , U. Rahayu , D. R. S. Lean , Chemical speciation and toxicity of nickel species in natural waters from the Sudbury area (Canada). Environ. Sci. Technol. 2002 , 36,  1477.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[28]   C. L. Chakrabarti , Y. Lu , J. Cheng , D. C. Grégoire , M. H. Back , W. H. Schroeder , Studies on metal speciation in the natural environment. Anal. Chim. Acta 1993 , 276,  47.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[29]   Environment Canada, Biological test method: growth inhibition test using the freshwater alga Selenastrum capricornutum, Environmental Protection Series, EPS 1/RM/25 1992, (Environment Canada: Ottawa).

[30]   P. Radix , M. Leonard , C. Papantoniou , G. Roman , E. Saouter , S. Gallotti-Schmitt , H. Thiebaud , P. Vasseur , Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol. Environ. Saf. 2000 , 47,  186.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[31]   S. Winch , J. Ridal , D. Lean , Increased metal bioavailability following alteration of freshwater dissolved organic carbon by ultraviolet B radiation exposure. Environ. Toxicol. 2002 , 17,  267.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[32]   US Environmental Protection Agency, A Linear Interpolation Method for Sublethal Toxicity: The Inhibition Concentration (ICp) Approach Version 2.0, Environmental Research Laboratory 1993 (US EPA: Duluth, MN).

[33]   E. Tipping , Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998 , 4,  3.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   R. Mandal , M. S. A. Salam , J. Murimboh , N. M. Hassan , C. L. Chakrabarti , M. H. Back , D. C. Gregoire , Competition of Ca(II) and Mg(II) with Ni(II) for binding by a well-characterized fulvic acid in model solutions. Environ. Sci. Technol. 2000 , 34,  2201.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   J. Buffle , R. S. Altmann , M. Filella , A. Tessier , Complexation by natural heterogeneous compounds: site occupation distribution functions, a normalized description of metal complexation. Geochim. Cosmochim. Acta 1990 , 54,  1535.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   J. L. Stauber , C. M. Davies , Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environ. Rev. 2000 , 8,  255.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   K. Hund , Algal growth inhibition test – feasibility and limitations for soil assessment. Chemosphere 1997 , 35,  1069.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[38]   P. Chakraborty , Y. Gopalapillai , J. Murimboh , I. I. Fasfous , C. L. Chakrabarti , Kinetic speciation of nickel in mining and municipal effluents. Anal. Bioanal. Chem. 2006 , 386,  1803.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1