Mercury cycling in the Arctic – does enhanced deposition flux mean net-input?
Ralf EbinghausGKSS Research centre Geesthacht, Institute for Coastal Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany. Email: ralf.ebinghaus@gkss.de
Environmental Chemistry 5(2) 87-88 https://doi.org/10.1071/EN08024
Submitted: 20 March 2008 Accepted: 25 March 2008 Published: 17 April 2008
Environmental context. Mercury has unique physico-chemical characteristics that include long-range atmospheric transport, transformation into highly toxic methylmercury species, and the bioaccumulation of these compounds, especially in the marine environment. This has motivated intense international research on mercury as a pollutant of global concern. With respect to Polar regions, scientific interest and research activities were even accelerated after the discovery of the so-called atmospheric mercury depletion events (AMDEs), which are supposed to lead to enhanced mercury deposition flux into these pristine environments in the ecologically very sensitive period in polar spring.
[1]
S. M. Bard ,
Global transport of anthropogenic contaminants and the consequences the Arctic marine ecosystem.
Mar. Pollut. Bull. 1999
, 38, 356.
| Crossref | GoogleScholarGoogle Scholar |
[2]
W. H. Schroeder ,
K. G. Anlauf ,
L. A. Barrie ,
J. Y. Lu ,
A. Steffen ,
D. R. Schneeberger ,
T. Berg ,
Arctic springtime depletion of mercury.
Nature 1998
, 394, 331.
| Crossref | GoogleScholarGoogle Scholar |
[3]
W. F. Fitzgerald ,
D. R. Engstrom ,
R. P. Mason ,
E. A. Nater ,
The case for atmospheric mercury contamination in remote areas.
Environ. Sci. Technol. 1998
, 32, 1.
| Crossref | GoogleScholarGoogle Scholar |
[4]
A. Martínez-Cortizas ,
X. Pontevedra-Pombal ,
E. García-Rodeja ,
J. C. Nóvoa-Muñoz ,
W. Shotyk ,
Mercury in a Spanish peat bog: archive of climate change and atmospheric metal deposition.
Science 1999
, 284, 939.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[5]
R. P. Mason ,
G.-R. Sheu ,
Role of the ocean in the global mercury cycle.
Global Biogeochem. Cycles 2002
, 16, 1093.
| Crossref | GoogleScholarGoogle Scholar |
[6]
E. G. Pacyna ,
J. M. Pacyna ,
Global emission of mercury from anthropogenic sources in 1995.
Water Air Soil Pollut. 2002
, 137, 149.
| Crossref | GoogleScholarGoogle Scholar |
[7]
S. Lindberg ,
R. Bullock ,
R. Ebinghaus ,
D. R. Engstrom ,
X. Feng ,
W. F. Fitzgerald ,
N. Pirrone ,
E. Prestbo ,
C. Seigneur ,
A synthesis of progress and uncertainties in attributing the sources of mercury in deposition.
Ambio 2007
, 36, 19.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[8]
D. Jaffe ,
S. Strode ,
Sources, fate and transport of atmospheric mercury from Asia.
Environ. Chem. 2008
, 5, 121.
| Crossref | GoogleScholarGoogle Scholar |
[9]
A. L. Choi ,
P. Grandjean ,
Methylmercury exposure and health effects in humans.
Environ. Chem. 2008
, 5, 112.
| Crossref | GoogleScholarGoogle Scholar |
[10]
I. M. Hedgecock ,
N. Pirrone ,
F. Sprovieri ,
Chasing quicksilver northward: mercury chemistry in the Arctic troposphere.
Environ. Chem. 2008
, 5, 131.
| Crossref | GoogleScholarGoogle Scholar |
[11]
C. R. Hammerschmidt ,
W. F. Fitzgerald ,
Methylmercury in arctic Alaskan mosquitoes: implications for impact of atmospheric mercury depletion events.
Environ. Chem. 2008
, 5, 127.
| Crossref | GoogleScholarGoogle Scholar |
[12]
P. M. Outridge ,
R. W. Macdonald ,
F. Wang ,
G. A. Stern ,
A. P. Dastoor ,
A mass balance inventory of mercury in the Arctic Ocean.
Environ. Chem. 2008
, 5, 89.
| Crossref | GoogleScholarGoogle Scholar |