Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Sequestration and retention of uranium(VI) in the presence of hydroxylapatite under dynamic geochemical conditions

Dawn M. Wellman A C , Julia N. Glovack B , Kent Parker A , Emily L. Richards A and Eric M. Pierce A
+ Author Affiliations
- Author Affiliations

A Pacific Northwest National Laboratory, Applied Geology and Geochemistry, PO Box 999, K3-62, Richland, WA 99354, USA.

B Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA.

C Corresponding author. Email: dawn.wellman@pnl.gov

Environmental Chemistry 5(1) 40-50 https://doi.org/10.1071/EN07060
Submitted: 5 September 2007  Accepted: 15 December 2007   Published: 22 February 2008

Environmental context. Contamination of surface and subsurface geologic media by heavy metals and radionuclides is a significant problem within the United State Department of Energy complex as a result of past nuclear operations. Numerous phosphate-based remediation strategies have been proposed to introduce hydroxylapatite directly or indirectly (i.e. through in situ precipitation) into subsurface regimes to act as an efficient sorbent for sequestration of metals and radionuclides such as uranium. Results presented here illustrate the importance of variable geochemical conditions on the mechanism of sequestration and long-term retention of uranium in the presence of hydroxylapatite.

Abstract. Numerous solid- and aqueous-phase phosphate-based technologies for remediating heavy metals and radionuclides have the common premise of sequestration by hydroxylapatite. Complexation reactions and hydrolysis generally preclude actinides from incorporation into intracrystalline sites; rather, surface sorption and precipitation are significant mechanisms for the sequestration of actinides. The effect of pH, aqueous speciation, and the availability of reactive surface sites on minerals such as hydroxylapatite have a significant impact on the mechanism and degree of sequestration and retention of variably charged contaminants such as uranium. Yet, little attention has been given to the sequestration and retention of uranium by hydroxylapatite under dynamic geochemical conditions that may be encountered during remediation activities. We present the results of an investigation evaluating the removal of uranium by hydroxylapatite in systems near equilibrium with respect to hydroxylapatite, and the effect of dynamic aqueous geochemical conditions, such as those encountered during and subsequent to remediation activities, on the retention of uranium. Results presented here support previous investigations demonstrating the efficiency of hydroxylapatite for sequestration of uranium and illustrate the importance of geochemical conditions, including changes to surface properties and aqueous speciation, on the sequestration and retention of uranium.

Additional keywords: kinetics, sorption, speciation.


Acknowledgements

The present work was supported in part by the US Department of Energy, Office of Environmental Management, EM-20 Environmental Cleanup and Acceleration, and by the Environmental Remediation Sciences Program, Office of Biological and Environmental Research grant number DE-FG02–06ER06–12, under Contract DE-AC06–76RL01830. This work was performed at Pacific Northwest National Laboratory, operated by Battelle Memorial Institute for the US Department of Energy under Contract DE-AC05–76RL01830. The assistance of E. T. Clayton in conducting ICP-MS analyses, and the assistance of R. M. Ermi for SEM-EDS analyses is greatly appreciated.


References


[1]   V. G. Chukhlantsev , S. I. Stepanov , Solubility of uranyl and thorium phosphates. Russ. J. Inorg. Chem. 1956 , 1,  478.
         open url image1

[2]   V. I. Karpov , The solubility of triuranyl phosphate. Russ. J. Inorg. Chem. 1961 , 6,  271.
         open url image1

[3]   A. I. Moskvin , A. M. Shelyakina , P. S. Perminov , Solubility product of uranyl phosphate and the composition and dissociation constants of uranyl phosphato-complexes. Russ. J. Inorg. Chem. 1967 , 12,  1756.
         open url image1

[4]   J. M. Schreyer , C. F. Baes , The solubility of uranium(VI) orthophosphates in phosphoric acid solutions. J. Am. Chem. Soc. 1954 , 76,  354.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   V. Vesely , V. Pekarek , M. Abbrent , A study on uranyl phosphates: III. Solubility products of uranyl hydrogen phosphate, uranyl orthophosphates and some alkali uranyl phosphates. J. Inorg. Nucl. Chem. 1965 , 27,  1159.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   P. M. Bertsch , D. Hunter , B. S. R. Sutton , S. Bajt , M. L. Rivers , In situ chemical speciation of uranium in soils and sediments by micro X-ray absorption spectroscopy. Environ. Sci. Technol. 1994 , 28,  980.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   E. C. Buck , N. R. Brown , N. L. Dietz , Contaminant uranium phases and leaching at the Fernald site in Ohio. Environ. Sci. Technol. 1995 , 30,  81.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   Buck E. C., Dietz N. L., Bates J. K., Cunnane J. C., Uranium-contaminated soils: Ultramicrotomy and electron beam analysis, ANL/CMT/PP-82412 1994 (Argonne National Laboratory, Argonne, IL).

[9]   Buck E. C., Dietz N. L., Fortner J. A., Bates J. K., Brown N. R., Characterization of uranium- and plutonium-contaminated soils by electron microscopy, ANL/CMT/CP-85758; CONF-950216–65 1995 (Argonne National Laboratory, Argonne, IL).

[10]   D. E. Morris , P. G. Allen , J. M. Berg , C. J. Chisholm-Brause , S. D. Conradson , R. J. Donohoe , N. J. Hess , J. A. Musgrave , C. D. Tait , Speciation of uranium in Fernald soils by molecular spectroscopic methods: characterization of untreated soils. Environ. Sci. Technol. 1996 , 30,  2322.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   V. C. Tidwell , D. E. Morris , J. C. Cunnane , S. Y. Lee , Characterizing soils contaminated with heavy metals: a uranium contamination case study. Rem. J. 1996 , 6,  81.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   M. P. Elless , S. Y. Lee , Uranium solubility of carbonate-rich uranium-contaminated soils. Water, Air, Soil Poll. 1998 , 107,  147.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   Taffet M., Study of the reaction controlling the mobility of uranium in ground and surface water systems in contact with hydroxylapatite, UCRL-TR-203891 2004 (Lawrence Livermore National Laboratory: Livermore, CA).

[14]   J. C. Seaman , J. S. Arey , P. M. Bertsch , Immobilization of nickel and other metals in contaminated sediments by hydroxylapatite addition. J. Environ. Qual. 2001 , 30,  460.
        | PubMed |  open url image1

[15]   A. R. Millard , R. E. Hedges , A diffusion-adsorption model of uranium uptake by archaeological bone. Geochim. Cosmochim. Acta 1996 , 60,  2139.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   J. Jeanjean , J. C. Rouchaud , L. Tran , M. Fedoroff , Sorption of uranium and other heavy metals on hydroxylapatite. J. Radioanal. Nucl. Chem. Lett. 1995 , 201,  529.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   P. Thakur , R. C. Moore , G. R. Choppin , Sorption of U(VI) species on hydroxylapatite. Radiochim. Acta 2005 , 93,  385.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   J. S. Arey , J. C. Seaman , P. M. Bertsch , Immobilization of uranium in contaminated sediments by hydroxylapatite addition. Environ. Sci. Technol. 1999 , 33,  337.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   Naftz D. L., Feltcorn E. M., Fuller C. C., Wilhelm R. G., Davis J. A., Morrison S. J., Freethey G. W., Piana M. J., Rowland R. C., Blue J. E., Field demonstration of permeable reactive barriers to remove dissolved uranium from groundwater, Fry Canyon, Utah, EPA 402-C-00–001 2000 (Academic Press: San Diego, CA).

[20]   C. C. Fuller , J. R. Bargar , J. A. Davis , Molecular-scale characterization of uranium sorption by bone hydroxylapatite materials for a permeable reactive barrier demonstration. Environ. Sci. Technol. 2003 , 37,  4642.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[21]   C. C. Fuller , J. R. Bargar , J. A. Davis , M. J. Piana , Mechanisms of uranium interactions with hydroxylapatite: implication for groundwater remediation. Environ. Sci. Technol. 2002 , 36,  158.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[22]   Fuller C. C., Piana M. J., Bargar J. R., Davis J. A., Kohler M., in Handbook of groundwater remediation using permeable reactive barriers: Applications to radionuclides, trace metals, and nutrients (Eds D. L. Naftz, S. J. Morrison, J. A. Davis, C. C. Fuller) 2002 (Academic Press: San Diego, CA).

[23]   H.-S. Park , I.-T. Kim , H.-Y. Kim , K.-S. Lee , S.-K. Ryu , J.-H. Kim , Application of apatite waste form for the treatment of water-soluble wastes containing radioactive elements. Part I. Investigation on the possibility. J. Ind. Engineering 2002 , 8,  318.
         open url image1

[24]   Cotton S., Lanthanide and actinide chemistry 2006 (Wiley: West Sussex, England).

[25]   Conca J., Strietelmeier E., Lu N., Ware S. D., Taylor T. P., Kaszuba J. P., Wright J., in Handbook of groundwater remediation using permeable reactive barriers (Eds D. Naftz, S. Morrison, C. Fuller, J. Davis) 2002 (Academic Press: San Diego, CA).

[26]   Conca J. L., Lu N., Parker G., Moore B., Adams A., Wright J., Heller P., PIMS – remediation of metal contaminated waters and soils, in Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, 22–25 May 2000 (Battelle Press: Columbus, OH).

[27]   Wright J., Peurrung L. M., Moody T. E., Conca J. L., Chen X., Didzerekis P. P., Wyse E., In situ immobilization of heavy metals in hydroxylapatite mineral formulations 1995 (Pacific Northwest Laboratory: Richland, WA).

[28]   Wright J., Skinner H. C. W., Mattigod S. V., Serne R. J., Solid solution hydroxylapatite mineral formation structure and crystal chemistry 1991 (Pacific Northwest Laboratory: Richland, WA).

[29]   J. C. Seaman , J. Hutchinson , B. P. Jackson , V. M. Vulava , In situ treatment of metals in contaminated soils using phytate. J. Environ. Qual. 2003 , 32,  153.
        | PubMed |  open url image1

[30]   K. Nash , Stability and stoichiometry of uranyl phosphonate coordination compounds in acid aqueous solutions. Radiochimica Acta 1993 , 61,  147.
         open url image1

[31]   K. Nash , Actinide phosphonate complexes in aqueous solutions. J. Alloy. Comp. 1994 , 213–214,  300.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[32]   Nash K., Organophosphorous reagents in actinide separations: Unique tools for production, cleanup and disposal, ANL/CHM/CP-100858 2000, (Argonne National Laboratory: Argonne, IL).

[33]   Nash K., Jensen E. J., Schmidt M. A., in Science and technology for disposal of radioactive tank wastes (Eds W. W. Schultz, N. J. Lombardo) 1998, p. 507 (Plenum Press: New York).

[34]   Nash K., Jensen M. P., Schmidt M. A., In-situ mineralization of actinides for groundwater cleanup: Laboratory demonstration with soil from the Fernald Environmental Management Project, in Proc. 214th National American Chemical Society Meetings, 1997, ANL/CHM/CP-932181; conf-970962 1997 (Argonne National Laboratory: Argonne, IL).

[35]   K. Nash , M. P. Jensen , M. A. Schmidt , Actinide immobilization in the subsurface environment by in situ treatment with a hydrolytically unstable organophosphorous complexant: uranyl uptake by calcium phytate. J. Alloy. Comp. 1998 , 271–273,  257.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   Nash K., Morse L. R., Jensen M. P., Appelman E. H., Schmidt M. A., Friedrich S., Redko M., Hines J. J., Water-soluble organophosphorous reagents for mineralization of heavy metals, ANL/CHM/CP-98479 1999 (Argonne National Laboratory: Argonne, IL).

[37]   Jensen M. P., Nash K., Morse J. W., Appelman E. H., Schmidt M. A., Immobilization of actinides in geomedia by phosphate precipitation, in ACS Symposium Series 1996, Vol. 651, pp. 272–285 (American Chemical Society: Washington, DC).

[38]   Lee S. Y., Francis C. W., Timpson M. E., Elless M. P., Radionuclide containment in soil by phosphate treatment, CONF-9503120–1 1995 (Oak Ridge National Laboratory: Oak Ridge, TN).

[39]   Vermeul V. R., Fruchter J. S., Fritz B. G., Mackley R., Wellman D. M., Williams M. D., In-situ uranium stabilization through polyphosphate injection: Pilot-scale treatability test at the Hanford site 300 area, in Proc. Waste Management, Phoenix, AZ, February 24–282008 (Pacific Northwest National Laboratory: Richland, WA)

[40]   Vermuel V. R., Fruchter J. S., Wellman D. M., Williams B. A., Williams M. D., Site characterization plan: Uranium stabilization through polyphosphate injection – 300 area uranium plume treatability demonstration project, PNNL-16008 2006 (Pacific Northwest National Laboratory: Richland, WA).

[41]   Wellman D. M., Icenhower J. I., Pierce E. M., McNamara B. K., Burton S. D., Geiszler K. N., Baum S. R., Butler B. C., Polyphosphate amendments for in situ immobization of uranium plumes, in Proc. Remediation of Contaminated Sediments – 2005: Finding Achievable Risk Reduction Solutions, Third International Conference on Remediation of Contaminated Sediments, New Orleans, LA, 24–27 January2005 (Battelle Press).

[42]   D. M. Wellman , J. P. Icenhower , A. T. Owen , Comparative analysis of soluble phosphate amendments for the remediation of heavy metal contaminants: effect on sediment hydraulic conductivity. Environ. Chem. 2006 , 3,  219.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[43]   Wellman D. M., Pierce E. M., Richards E. L., Burton S. D., McNamara B. K., Parker K. E., Fruchter J. S., Vermeul V. R., Uranium plume treatability demonstration at the Hanford site 300 area: Development of polyphosphate remediation technology for in-situ stabilization of uranium, in Proc. Waste Management, Phoenix, AZ, 24–28 February 2008, in press.

[44]   Wellman D. M., Pierce E. M., Richards E. L., Butler B. C., Parker K. E., Glovack J. N., Burton S. D., Baum S. R., Clayton E. T., Rodriguez E. A., Interim report: Uranium stabilization through polyphosphate injection – 300 area uranium plume treatability demonstration project, PNNL-16683 2007 (Pacific Northwest National Laboratory: Richland, WA).

[45]   Wellman D. M., Pierce E. M., Richards E. L., Vermeul V. R., Fruchter J. S., Butler B. C., Burton S. D., Williams M. D., McNamara B. K., Mattigod S. V., Icenhower J. P., in Waste management: Research, development and policy (Ed. F. Columbus) (Nova Science Publishers, Inc.: Hauppauge, NY), in press.

[46]   Wellman D. M., Pierce E. M., Vermeul V. R., Richards E. L., Williams M. D., Rockhold M. L., Mattigod S. V., Fruchter J. S., Icenhower J. P., in Waste management: Research, development and policy (Ed. F. Columbus) 2008 (Nova Science Publishers, Inc.: Hauppauge, NY).

[47]   S. Brunauer , P. H. Emmett , E. Teller , Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938 , 60,  309.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[48]   Wolery T. W., Jarek R. L., Eq3/6, Theoretical Manual, User’s Guide, and Related Documentation (version 8.0) 2003 (Sandia National Laboratory: Albuquerque, NM).

[49]   ASTM, Standard test method for distribution ratios by the short-term batch method, D 4319–93 2001 (ASTM International: West Conshohcken, PA).

[50]   Mason B., Berry L. G., Elements of mineralogy (Eds J. Gilluly, A. O. Woodford) 1968 (W. H. Freeman and Company: San Francisco, CA).

[51]   L. Wu , W. Forsling , P. W. Schindler , Surface complexation of calcium minerals in aqueous solution 1. Surface protonation at fluorapatite–water interfaces. J. Colloid Interface Sci. 1991 , 147,  178.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[52]   Bethke C. M., The Geochemist’s Workbench 1992 (University of Illinois: Urbana-Champaign, IL).

[53]   Payne T. E., Lumpkin G. R., Waite T. D., in Adsorption of Metals by Geomedia (Ed. E. A. Jenne) 1998, p. 75 (Academic Press: San Diego, CA).

[54]   D. M. Wellman , K. M. Gunderson , J. I. Icenhower , S. W. Forrester , Dissolution kinetics of synthetic and natural meta-autunite minerals, X3-nn+[(UO2)(PO4)]2 xH2O, under acidic conditions. Geochem. Geophy. Geosy. 2007 , 8,  Q11001.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[55]   D. M. Wellman , J. P. Icenhower , A. P. Gamerdinger , S. W. Forrester , Effects of pH, temperature, and aqueous organic material on the dissolution kinetics of meta-autunite minerals, (Na, Ca)2–1[(UO2)(PO4)]2 3H2O. Am. Mineral. 2006 , 91,  143.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[56]   Langmuir D., in Aqueous Environmental Chemistry (Ed. R. McConnin) 1997, p. 494 (Prentice-Hall: Upper Saddle River, NJ).

[57]   Read D., Chemical Project Report on Stage 2: Application of Speciation Models to Laboratory and Field Data Sets, EUR-13124 1990 (Commission of the European Communities: Luxembourg).

[58]   Rai D., Xia Y., Rao L., The solubility of (UO2)3(PO4)2 4H2O in UO22+-OH-PO43–-H2O system and its comparison to the solubility of Pu(VI) phosphate, PNNL-SA-31289 1999 (Pacific Northwest National Laboratory: Richland, WA).

[59]   Grenthe I., Fuger J., Konings R. J. M., Lemire R. J., Muller A. B., Nguyen-Trung C., Wanner H., Chemical Thermodynamics of Uranium (Eds H. Wanner, I. Forest) 1992 (OECD Nuclear Energy Agency: Amsterdam).

[60]   A. Sandino , J. Bruno , The solubility of (UO2)3(PO4)2·4H2O(s) and the formation of U(VI) phosphate complexes: Their influence speciation in natural waters Geochim. Cosmochim. Acta 1992 , 56,  4135.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1