Re-visiting the CLAW hypothesis
S. M. Vallina A B C and R. Simó AA Institut de Ciencies del Mar de Barcelona (ICM-CSIC), E-08003 Barcelona, Spain.
B Present address: School of Environmental Sciences, University of East Anglia (ENV-UEA), Norwich, UK.
C Corresponding author. Email: sergio.vallina@uea.ac.uk, sergio.vallina@gmail.com
Environmental Chemistry 4(6) 384-387 https://doi.org/10.1071/EN07055
Submitted: 30 August 2007 Accepted: 25 October 2007 Published: 6 December 2007
Environmental context. Over the last twenty years, large and continued research efforts have been invested in deciphering whether oceanic plankton contribute to the regulation of climate by the production and release of cloud-seeding atmospheric sulfur. Our recent research using globally spread observations and satellite-derived data suggest that biogenic sulfur from the oceans represents a major source of cloud-forming aerosols over much of the pristine southern hemisphere oceans. These climate-cooling sulfur emissions respond positively to incoming solar radiation over seasonal cycles, but show a weak response to anthropogenic global warming foreseen for the current century.
[1]
R. J. Charlson ,
J. E. Lovelock ,
M. O. Andreae ,
S. G. Warren ,
Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate.
Nature 1987
, 326, 655.
| Crossref | GoogleScholarGoogle Scholar |
[2]
D. A. Toole ,
D. A. Siegel ,
Ligth-driven cycling of dimethylsulfide (DMS) in the Sargasso Sea: closing the loop.
Geophys. Res. Lett. 2004
, 31, L09308.
| Crossref | GoogleScholarGoogle Scholar |
[3]
S. M. Vallina ,
R. Simó ,
Strong relationship between DMS and the solar radiation dose over the global Surface Ocean.
Science 2007
, 315, 506.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[4]
S. M. Vallina ,
R. Simó ,
S. Gassó ,
C. de Boyer-Montegut ,
E. del Rio ,
E. Jurado ,
J. Dachs ,
Analysis of a potential ‘solar radiation dose–dimethylsulfide–cloud condensation nuclei’ link from globally mapped seasonal correlations.
Global Biogeochem. Cy. 2007
, 21, GB2004.
| Crossref | GoogleScholarGoogle Scholar |
[5]
J. W. H. Dacey ,
F. A. Howse ,
A. F. Michaels ,
S. G. Wakeham ,
Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea.
Deep-Sea Res. Pt. I 1998
, 45, 2085.
| Crossref | GoogleScholarGoogle Scholar |
[6]
S. M. Vallina ,
R. Simó ,
S. Gassó ,
What controls CCN seasonality in the southern ocean? A statistical analysis based on satellite-derived chlorophyll and CCN and model-estimated OH radical and rainfall.
Global Biogeochem. Cy. 2006
, 20, GB1014.
| Crossref | GoogleScholarGoogle Scholar |
[7]
M. Vila-Costa ,
R. P. Kiene ,
R. Simó ,
Seasonal variability of the dynamics of dimethylated sulfur compounds in a NW Mediterranean site.
Limnol. Oceanogr.
in press.
[8]
R. Simó ,
C. Pedros-Allio ,
Role of vertical mixing in controlling the oceanic production of dimethyl sulphide.
Nature 1999
, 402, 396.
| Crossref | GoogleScholarGoogle Scholar |
[9]
R. P. Kiene ,
L. J. Linn ,
The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35s-DMSP.
Geochim. Cosmochim. Acta 2000
, 64, 2797.
| Crossref | GoogleScholarGoogle Scholar |
[10]
D. C. Yoch ,
Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide.
Appl. Environ. Microb. 2002
, 68, 5804.
| Crossref | GoogleScholarGoogle Scholar |
[11]
M. Vila-Costa ,
D. A. del Valle ,
J. M. Gonzalez ,
D. Slezak ,
R. P. Kiene ,
O. Sanchez ,
R. Simó ,
Phylogenetic identification and metabolism of marine dimethylsulfide-consuming bacteria.
Environ. Microbiol. 2006
, 8, 2189.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[12]
D. A. del Valle ,
D. J. Kieber ,
R. P. Kiene ,
Depth-dependent fate of biologically-consumed dimethylsulfide in the Sargasso Sea.
Mar. Chem. 2007
, 103, 197.
| Crossref | GoogleScholarGoogle Scholar |
[13]
G. J. Herndl ,
G. Muller-Niklas ,
J. Frick ,
Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean.
Nature 1993
, 361, 717.
| Crossref | GoogleScholarGoogle Scholar |
[14]
D. Slezak ,
A. Brugger ,
G. J. Herndl ,
Impact of solar radiation on the biological removal of dimethylsulfoniopropionate and dimethylsulfide in marine surface waters.
Aquat. Microb. Ecol. 2001
, 25, 87.
| Crossref | GoogleScholarGoogle Scholar |
[15]
W. Sunda ,
D. J. Kleber ,
R. P. Kiene ,
S. Huntsman ,
An antioxidant function for DMSP and DMS in marine algae.
Nature 2002
, 418, 317.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[16]
S. M. Vallina ,
R. Simó ,
T. R. Anderson ,
A. Gabric ,
R. Cropp ,
J. M. Pacheco ,
A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: simulating the dimethylsulfide (DMS) summer-paradox.
J. Geophys. Res. – Biogeosci.
in press.
[17]
J. M. Prospero ,
D. L. Savoie ,
E. S. Saltzman ,
R. Larsen ,
Impact of oceanic sources of biogenic sulphur on sulphate aerosol concentrations at Mawson, Antarctica.
Nature 1991
, 350, 221.
| Crossref | GoogleScholarGoogle Scholar |
[18]
G. P. Ayers ,
J. L. Gras ,
Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air.
Nature 1991
, 353, 834.
| Crossref | GoogleScholarGoogle Scholar |
[19]
M. O. Andreae ,
W. Elbert ,
S. J. de Mora ,
Biogenic sulfur emissions and aerosols over the tropical south Atlantic: 3. atmospheric dimethylsulfide, aerosols and cloud condensation nuclei.
J. Geophys. Res. 1995
, 100(D6), 11335.
| Crossref | GoogleScholarGoogle Scholar |
[20]
G. P. Ayers ,
J. M. Cainey ,
R. W. Gillett ,
J. P. Ivey ,
Atmospheric sulphur and cloud condensation nuclei in marine air in the southern hemisphere.
Philos. Trans. R. Soc. Lond. B: Biol. Sci. 1997
, 352, 203.
| Crossref | GoogleScholarGoogle Scholar |
[21]
A. D. Clarke ,
D. Davis ,
V. N. Kapustin ,
F. Eisele ,
G. Chen ,
I. Paluch ,
D. Lenschow ,
A. R. Bandy ,
et al. Particle nucleation in the tropical boundary layer and its couplings to marine sulfur sources.
Science 1998
, 282, 89.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[22]
M. O. Andreae ,
W. Elbert ,
Y. Cai ,
T. W. Andreae ,
Non-sea-salt sulfate, methanesulfonate, and nitrate aerosol concentrations and size distributions at Cape Grim, Tasmania.
J. Geophys. Res. 1999
, 104(D1), 21695.
| Crossref | GoogleScholarGoogle Scholar |
[23]
G. P. Ayers ,
R. W. Gillett ,
DMS and its oxidation products in the remote marine atmosphere: implications for climate and atmospheric chemistry.
J. Sea Res. 2000
, 43, 275.
| Crossref | GoogleScholarGoogle Scholar |
[24]
R. J. Charlson ,
S. E. Schwartz ,
J. M. Hales ,
R. D. Cess ,
J. A. Coakley ,
J. E. Hansen ,
D. J. Hofmann ,
Climate forcing by anthropogenic aerosols.
Science 1992
, 255, 423.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[25]
R. B. Husar ,
J. M. Prospero ,
L. L. Stowe ,
Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product.
J. Geophys. Res. 1997
, 102(D14), 16889.
| Crossref | GoogleScholarGoogle Scholar |
[26]
M. O. Andreae ,
T. W. Andreae ,
D. Meyerdierks ,
C. Thiel ,
Marine sulfur cycling and the atmospheric aerosol over the springtime North Atlantic.
Chemosphere 2003
, 52, 1321.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[27]
S. J. Smith ,
H. Pitcher ,
T. M. L. Wigley ,
Global and regional anthropogenic sulfur dioxide emissions.
Global Planet. Change 2001
, 29, 99.
| Crossref | GoogleScholarGoogle Scholar |
[28]
M. Gondwe ,
M. Krol ,
W. Gieskes ,
W. Klaassen ,
H. de Baar ,
The contribution of ocean-leaving DMS to the global atmospheric burdens of DMS, MSA, SO2, and NSS SO4.
Global Biogeochem. Cy. 2003
, 17, 1056.
| Crossref | GoogleScholarGoogle Scholar |
[29]
D. M. Murphy ,
J. R. Anderson ,
P. K. Quinn ,
L. M. McInnes ,
F. J. Brechtel ,
S. M. Kreidenweis ,
A. M. Middlebrook ,
M. Posfai ,
et al. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer.
Nature 1998
, 392, 62.
| Crossref | GoogleScholarGoogle Scholar |
[30]
C. D. O’Dowd ,
M. C. Facchini ,
F. Cavalli ,
D. Ceburnis ,
M. Mircea ,
S. Decesari ,
S. Fuzzi ,
Y. J. Yoon ,
et al. Biogenically driven organic contribution to marine aerosol.
Nature 2004
, 431, 676.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[31]
N. Meskhidze ,
A. Nenes ,
Phytoplankton and cloudiness in the Southern Ocean.
Science 2006
, 314, 1419.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[32]
S. M. Vallina ,
R. Simó ,
M. Manizza ,
Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming.
Proc. Natl. Acad. Sci. USA 2007
, 104, 16004.
| Crossref | GoogleScholarGoogle Scholar |
[33]
L. Bopp ,
O. Boucher ,
O. Aumont ,
S. Belviso ,
J. L. Dufresne ,
M. Pham ,
P. Monfray ,
Will marine dimethylsulfide emissions amplify or alleviate global warming? A model study.
Can. J. Fish. Aquat. Sci. 2004
, 61, 826.
| Crossref | GoogleScholarGoogle Scholar |
[34]
R. Simó ,
Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links.
Trends Ecol. Evol. 2001
, 16, 287.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[35]
R. Simó ,
From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales.
Can. J. Fish. Aquat. Sci. 2004
, 61, 673.
| Crossref | GoogleScholarGoogle Scholar |
[36]
J. Stefels ,
M. Steinke ,
S. Turner ,
G. Malin ,
S. Belviso ,
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling.
Biogeochemistry 2007
, 83, 245.
| Crossref | GoogleScholarGoogle Scholar |