Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Flux chamber study of particle formation from Durvillaea potatorum

Jill M. Cainey A E , Melita Keywood B , E. Keith Bigg C , Michael R. Grose D , Rob W. Gillett B and Mick Meyer B
+ Author Affiliations
- Author Affiliations

A Cape Grim Baseline Air Pollution Station, Bureau of Meteorology, 159 Nelson Street, Smithton, Tas. 7330, Australia.

B CSIRO Marine and Atmospheric Research, Aspendale, Vic. 3195, Australia.

C Castle Hill, NSW 2154, Australia.

D IASOS, University of Tasmania, Hobart, Tas. 7001, Australia.

E Corresponding author. Email: j.cainey@bom.gov.au

Environmental Chemistry 4(3) 151-154 https://doi.org/10.1071/EN07006
Submitted: 24 January 2007  Accepted: 6 June 2007   Published: 22 June 2007

Environmental context. Kelp at Mace Head, Ireland, produces large quantities of iodine when exposed to sunlight at low tide and this iodine results in the rapid production of particles. Cape Grim, Tasmania, also has large colonies of kelp (Durvillaea potatorum) but its role in particle formation appears limited. A flux chamber was used to better understand the response of Durvillaea potatorum to light stress and ozone.

Abstract. Brown kelp, in particular Laminara digitata at Mace Head, Ireland, has been shown to emit iodine when under stress, resulting in new particle formation. The Cape Grim Baseline Air Pollution Station, Tasmania, is surrounded by rocky reefs that support large colonies of the brown kelp Durvillaea potatorum. During an intensive campaign in February 2006 at Cape Grim, levels of IO, OIO and methyl iodide remained at background levels and no particle formation events could be associated with locally generated precursor iodine species.

In order to better understand the limitations of the local kelp to provide a source of precursor species, samples of Durvillaea potatorum were collected from the beach below the Cape Grim Station and tested for their capacity to initiate particle formation using a flux chamber technique. Particles were observed only when the kelp was exposed to both very high levels (>100 ppb) of ozone and natural solar radiation. There was a high correlation between ozone level and particles produced. The particles resulting from exposure to high levels of ozone were aromatic and volatile.

Durvillaea potatorum appears to plays a very limited role in contributing to particle formation at Cape Grim, but it does represent a source of atmospheric iodine under photo-oxidative stress, of 18 pmol g–1 (fresh weight) min–1 and is likely to have a significant role in atmospheric chemistry at this site.


References


[1]   C. D. O’Dowd , K. Hämeri , J. M. Mäkelä , L. Pirjola , M. Kulmala , S. G. Jennings , H. Berresheim , H.-C. Hansson , G. de Leeuw , G. J. Kunz , A. G. Allen , C. N. Hewitt , A. Jackson , Y. Viisanen , T. Hoffmann , A dedicated study of new particle formation and fate in the coastal environment (PARFORCE): overview of objectives and achievements. J. Geophys. Res. 2002 , 107,  8108.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   C. D. O’Dowd , T. Hoffmann , Coastal new particle formation: a review of current state-of-the-art. Environ. Chem. 2005 , 2,  245.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   C. D. O’Dowd , M. Geever , M. K. Hill , M. H. Smith , S. G. Jennings , New particle formation: nucleation rates and spatial scales in the clean marine coastal environment. Geophys. Res. Lett. 1998 , 25,  1661.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   L. J. Carpenter , W. T. Sturges , S. A. Penkett , P. S. Liss , B. Alicke , K. Hebestreit , U. Platt , Short-lived alkyl iodides and bromides at Mace Head, Ireland: links to biogenic sources and halogen oxide production. J. Geophys. Res. 1999 , 104,  1679.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   B. J. Allan , G. McFiggans , J. M. C. Plane , Observations of iodine monoxide in the remote marine boundary layer. J. Geophys. Res. 2000 , 105,  14 363.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   B. J. Allan , J. M. C. Plane , G. Mcfiggans , Observations of OIO in the remote marine boundary layer. Geophys. Res. Lett. 2001 , 28,  1945.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   L. J. Carpenter , P. S. Liss , S. A. Penkett , Marine organohalogens in the atmosphere over the Atlantic and Southern Oceans. J. Geophys. Res. 2003 , 108,  4256.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   Aerosol Particulates, Baseline Atmospheric Program (Australia) 1978 1978, p. 14 (Bureau of Meteorology and CSIRO, Division of Atmospheric Research: Melbourne).

[9]   E. K. Bigg , D. E. Turvey , Sources of atmospheric particles over Australia. Atmos. Environ. 1978 , 12,  1643.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   J. M. Cainey , M. Keywood , M. R. Grose , P. Krummel , I. E. Galbally , P. Johnston , R. Gillett , M. Meyer , P. Fraser , P. Steele , M. Harvey , K. Kreher , T. Stein , O. Ibrahim , Z. D. Ristovski , G. Johnson , C. Fletcher , E. K. Bigg , J. Gras , Precursors to Particles (P2P) at Cape Grim 2006: campaign overview. Environ. Chem. 2007 , 4,  143.
         open url image1

[11]   C. J. Palmer , T. L. Anders , L. J. Carpenter , F. C. Küpper , G. B. McFiggans , Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle production. Environ. Chem. 2005 , 2,  282.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   Galbally I. E., Roy C. R., Elsworth C. M., Rabich H. A. H., The measurement of nitrogen oxide (NO, NO2) exchanging over plant / soil surfaces. CAR Technical Paper No. 8 1985 (CSIRO: Melbourne).

[13]   G. P. Ayers , S. A. Penkett , R. W. Gillett , B. Bandy , I. E. Galbally , C. P. Meyer , C. M. Elsworth , T. S. Bentley , B. W. Forgan , The annual cycle of peroxides and ozone in marine air at Cape Grim, Tasmania. J. Atmos. Chem 1996 , 23,  221.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   A. C. Cheshire , N. D. Hallam , Biomass and density of native stands of Durvillaea potatorum (southern bull-kelp) in south eastern Australia. Mar. Ecol. Prog. Ser. 1988 , 48,  277.
         open url image1

[15]   M. R. Grose , J. M. Cainey , A. McMinn , J. A. E. Gibson , Coastal marine methyl iodide source and links to new particle formation at Cape Grim during February 2006. Environ. Chem. 2007 , 4,  172.
         open url image1

[16]   G. Ma,, Iodine content of Durvillaea potatorum liquid seaweed. Westmead Hospital, Sydney, Australia. Unpublished data.

[17]   E. A. Gall , C. K. Frithjof , B. Kloareg , A survey of iodine content in Laminaria digitata. Bot. Mar. 2004 , 47,  30.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   R. von Glasow , P. Crutzen , Model study of multiphase DMS oxidation with a focus on halogens. Atmos. Chem. Phys. 2004 , 4,  589.
         open url image1

[19]   D. M. Murphy , D. S. Thomson , A. M. Middlebrook , Bromine, iodine, and chlorine in single aerosol particles at Cape Grim. Geophys. Res. Lett. 1997 , 24,  3197.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[20]   P. Vaattovaara , P. E. Huttunen , Y. J. Yoon , J. Joutsensaari , K. E. J. Lehtinen , C. D. O’Dowd , A. Laaksonen , The composition of nucleation and Aitken mode particles during coastal nucleation events: evidence for marine secondary organic contribution. Atmos. Chem. Phys. 2006 , 6,  4601.
         open url image1

[21]   R. Von Glasow , Seaweed, iodine, new particles and atmospheric chemistry – the current state of play. Environ. Chem. 2005 , 2,  243.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1