Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
FOREWORD

Foreword to the tribute issue for Professor Peter Campbell

Kevin J. Wilkinson
+ Author Affiliations
- Author Affiliations

Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, CP 6128 Succursale Centre-ville, Montreal, QC, H3C 3J7, Canada. Corresponding author: Email: kj.wilkinson@umontreal.ca

Environmental Chemistry 13(3) i-ii https://doi.org/10.1071/ENv13n3_FO
Published: 25 May 2016


References

[1]  P. G. C. Campbell, Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model, in Metal Speciation and Bioavailability in Aquatic Systems (Eds A. Tessier, D. R. Turner) 1995, vol. 3, pp. 45–102 (Wiley: Chichester, UK).

[2]  A. Tessier, P. G. C. Campbell, M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals Anal. Chem. 1979, 51, 844.
Sequential extraction procedure for the speciation of particulate trace metalsCrossref | GoogleScholarGoogle Scholar |

[3]  M. Lavoie, S. Le Faucheur, C. Fortin, P. G. C. Campbell, Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granules Aquat. Toxicol. 2009, 92, 65.
Cadmium detoxification strategies in two phytoplankton species: metal binding by newly synthesized thiolated peptides and metal sequestration in granulesCrossref | GoogleScholarGoogle Scholar |

[4]  O. Errecalde, M. Seidl, P. G. C. Campbell, Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum: an exception to the free-ion model Water Res. 1998, 32, 419.
Influence of a low molecular weight metabolite (citrate) on the toxicity of cadmium and zinc to the unicellular green alga Selenastrum capricornutum: an exception to the free-ion modelCrossref | GoogleScholarGoogle Scholar |

[5]  Y. Couillard, P. G. C. Campbell, A. Tessier, Response of metallothionein concentrations in a fresh-water bivalve (Anodonta grandis) along an environmental cadmium gradient Limnol. Oceanogr. 1993, 38, 299.
Response of metallothionein concentrations in a fresh-water bivalve (Anodonta grandis) along an environmental cadmium gradientCrossref | GoogleScholarGoogle Scholar |

[6]  P. G. C. Campbell, M. R. Twiss, K. J. Wilkinson, Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota Can. J. Fish. Aquat. Sci. 1997, 54, 2543.
Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biotaCrossref | GoogleScholarGoogle Scholar |

[7]  C.-M. Zhao, P. G. C. Campbell, K. J. Wilkinson, When are metal complexes bioavailable? Environ. Chem. 2016, 13, 425.
When are metal complexes bioavailable?Crossref | GoogleScholarGoogle Scholar |

[8]  A. Taylor, W. Maher, Developing a sentinel mollusc species for toxicity assessment: metal exposure, dose and response – laboratory v. field exposures and resident organisms Environ. Chem. 2016, 13, 434.
Developing a sentinel mollusc species for toxicity assessment: metal exposure, dose and response – laboratory v. field exposures and resident organismsCrossref | GoogleScholarGoogle Scholar |

[9]  Y. Gopalapillai, B. Hale, Evaluating the concentration addition approach for describing expected toxicity of a ternary metal mixture (Ni, Cu, Cd) using metal speciation and response surface regression Environ. Chem. 2016, 13, 447.
Evaluating the concentration addition approach for describing expected toxicity of a ternary metal mixture (Ni, Cu, Cd) using metal speciation and response surface regressionCrossref | GoogleScholarGoogle Scholar |

[10]  E. Müller, R. Behra, L. Sigg, Toxicity of engineered copper (Cu0) nanoparticles to the green alga Chlamydomonas reinhardtii Environ. Chem. 2016, 13, 457.
Toxicity of engineered copper (Cu0) nanoparticles to the green alga Chlamydomonas reinhardtiiCrossref | GoogleScholarGoogle Scholar |

[11]  E. Tipping, S. Lofts, A. Stockdale, Metal speciation from stream to open ocean: modelling v. measurement Environ. Chem. 2016, 13, 464.
Metal speciation from stream to open ocean: modelling v. measurementCrossref | GoogleScholarGoogle Scholar |

[12]  S. Leguay, P. G. C. Campbell, C. Fortin, Determination of the free-ion concentration of rare earth elements by an ion-exchange technique: implementation, evaluation and limits Environ. Chem. 2016, 13, 478.
Determination of the free-ion concentration of rare earth elements by an ion-exchange technique: implementation, evaluation and limitsCrossref | GoogleScholarGoogle Scholar |

[13]  B. M. Angel, S. C. Apte, G. E. Batley, M. D. Raven, Lead solubility in seawater: an experimental study Environ. Chem. 2016, 13, 489.
Lead solubility in seawater: an experimental studyCrossref | GoogleScholarGoogle Scholar |

[14]  T. N. Tait, C. A. Cooper, J. C. McGeer, C. M. Wood, D. S. Smith, Influence of dissolved organic matter (DOM) source on copper speciation and toxicity to Brachionus plicatilis Environ. Chem. 2016, 13, 496.
Influence of dissolved organic matter (DOM) source on copper speciation and toxicity to Brachionus plicatilisCrossref | GoogleScholarGoogle Scholar |

[15]  R. D. Deese, M. R. LeBlanc, R. L. Cook, Surfactant toxicity to Artemia franciscana and the influence of humic acid and chemical composition Environ. Chem. 2016, 13, 507.
Surfactant toxicity to Artemia franciscana and the influence of humic acid and chemical compositionCrossref | GoogleScholarGoogle Scholar |

[16]  S. A. Norton, G. L. Jacobson, J. Kopáček, T. Navrátil, A comparative study of long-term Hg and Pb sediment archives Environ. Chem. 2016, 13, 517.
A comparative study of long-term Hg and Pb sediment archivesCrossref | GoogleScholarGoogle Scholar |

[17]  S. Shao, C. T. Driscoll, C. E. Johnson, T. J. Fahey, J. J. Battles, J. D. Blum, Long-term responses in soil solution and stream-water chemistry at Hubbard Brook after experimental addition of wollastonite Environ. Chem. 2016, 13, 528.
Long-term responses in soil solution and stream-water chemistry at Hubbard Brook after experimental addition of wollastoniteCrossref | GoogleScholarGoogle Scholar |