Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Foreword to the Research Front on ‘Mineral–Organic Interactions in Aqueous Systems’

Jon Chorover

Environmental Chemistry 12(1) i-ii https://doi.org/10.1071/ENv12n1_FO
Published: 28 January 2015


References

[1]  W. Stumm, Chemistry of the Solid–Water Interface: Processes at the Mineral–Water and Particle–Water Interface in Natural Systems 1992 (Wiley: New York).

[2]  G. Sposito, The Surface Chemistry of Natural Particles 2004 (Oxford University Press: New York).

[3]  G. E. Brown, V. E. Henrich, W. H. Casey, D. L. Clark, C. Eggleston, A. Felmy, D. W. Goodman, M. Gratzel, G. Maciel, M. I. McCarthy, K. H. Nealson, D. A. Sverjensky, M. F. Toney, J. M. Zachara, Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 1999, 99, 7710.1021/CR980011Z

[4]  R. Hellmann, Unifying natural and laboratory chemical weathering with interfacial dissolution– reprecipitation: a study based on the nanometer-scale chemistry of fluid–silicate interfaces. Chem. Geol. 2012, 294–295, 203.
Unifying natural and laboratory chemical weathering with interfacial dissolution– reprecipitation: a study based on the nanometer-scale chemistry of fluid–silicate interfaces.Crossref | GoogleScholarGoogle Scholar |

[5]  E. H. Oelkers, General kinetic description of multioxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta 2001, 65, 3703.
General kinetic description of multioxide silicate mineral and glass dissolution.Crossref | GoogleScholarGoogle Scholar |

[6]  P. A. O’Day, Molecular environmental geochemistry. Rev. Geophys. 1999, 37, 249.
Molecular environmental geochemistry.Crossref | GoogleScholarGoogle Scholar |

[7]  T. Hiemstra, W. H. Van Riemsdijk, Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. J. Colloid Interface Sci. 1999, 210, 182.
Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides.Crossref | GoogleScholarGoogle Scholar |

[8]  L. Petridis, H. Ambaye, S. Jagadamma, S. M. Kilbey II, B. S. Lokitz, V. Lauter, M. A. Mayes, Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization. Environ. Sci. Technol. 2014, 48, 79.
Spatial arrangement of organic compounds on a model mineral surface: implications for soil organic matter stabilization.Crossref | GoogleScholarGoogle Scholar |

[9]  W. H. Casey, Ligand and oxygen–isotope-exchange pathways of geochemical interest. Environ. Chem. 2015, 12, 1.
Ligand and oxygen–isotope-exchange pathways of geochemical interest.Crossref | GoogleScholarGoogle Scholar |

[10]  A. G. Stack, P. R. C. Kent, Geochemical reaction mechanism discovery from molecular simulation. Environ. Chem. 2015, 12, 20.
Geochemical reaction mechanism discovery from molecular simulation.Crossref | GoogleScholarGoogle Scholar |

[11]  R. F. Carbonaro, A. T. Stone, Oxidation of CrIII aminocarboxylate complexes by hydrous manganese oxide: products and time course behaviour. Environ. Chem. 2015, 12, 33.
Oxidation of CrIII aminocarboxylate complexes by hydrous manganese oxide: products and time course behaviour.Crossref | GoogleScholarGoogle Scholar |

[12]  T. Pasakarnis, M. L. McCormick, G. F. Parkin, A. Thompson, M. M. Scherer, FeIIaq–FeIIIoxide electron transfer and Fe exchange: effect of organic carbon. Environ. Chem. 2015, 12, 52.
FeIIaq–FeIIIoxide electron transfer and Fe exchange: effect of organic carbon.Crossref | GoogleScholarGoogle Scholar |

[13]  A. G. B. Williams, M. M. Scherer, Spectroscopic evidence for FeII–FeIII electron transfer at the iron oxide–water interface. Environ. Sci. Technol. 2004, 38, 4782.
Spectroscopic evidence for FeII–FeIII electron transfer at the iron oxide–water interface.Crossref | GoogleScholarGoogle Scholar |

[14]  C. Chen, D. L. Sparks, Multi-elemental STXM-NEXAFS assessment of organo-mineral associations in soils from reduced environments. Environ. Chem. 2015, 12, 64.
Multi-elemental STXM-NEXAFS assessment of organo-mineral associations in soils from reduced environments.Crossref | GoogleScholarGoogle Scholar |

[15]  B. R. Linker, R. Khatiwada, N. Perdrial, L. Abrell, R. Sierra, J. A. Field, J. Chorover, Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces. Environ. Chem. 2015, 12, 74.
Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces.Crossref | GoogleScholarGoogle Scholar |