Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

On the nature of dissolved copper ligands in the early buoyant plume of hydrothermal vents

Laura Cotte A B F , Dario Omanović C , Matthieu Waeles B , Agathe Laës D , Cécile Cathalot E , Pierre-Marie Sarradin A and Ricardo D. Riso B
+ Author Affiliations
- Author Affiliations

A Laboratoire Environnement Profond (LEP/EEP/REM), Ifremer, F-29280 Plouzané, France.

B Laboratoire des Sciences de l’Environnement Marin (LEMAR), Université de Bretagne Occidentale, F-29280 Plouzané, France.

C Laboratory for Physical Chemistry of Traces (LPCT), Ruđer Bošković Institute, 10002 Zagreb, Croatia.

D Laboratoire Détection Capteurs et Mesures (LDCM/RDT/REM), Ifremer, F-29280 Plouzané, France.

E Laboratoire Cycles Géochimiques et ressources (LCG/GM/REM), Ifremer, F-29280 Plouzané, France.

F Corresponding author. Email: cottelaura@yahoo.fr

Environmental Chemistry 15(2) 58-73 https://doi.org/10.1071/EN17150
Submitted: 25 August 2017  Accepted: 21 November 2017   Published: 3 May 2018

Environmental context. Copper released by deep-sea hydrothermal vents has been recognised to be partly stabilised against precipitation by its complexation with strong Cu binding ligands. Yet, the sources and nature of these compounds in such environments are still not fully understood. This study shows that the Cu ligands detected are hydrothermally sourced and could be mainly inorganic sulfur species.

Abstract. The apparent speciation of Cu in the early buoyant plume of two black smokers (Aisics and Y3) from the hydrothermal vent field Lucky Strike (Mid-Atlantic Ridge) was investigated using competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE–AdCSV). We have assessed the apparent Cu-binding ligand concentration ([L]) and the corresponding conditional stability constant (log K′) for 24 samples. At the smoker Aisics, [L] ranged from 18.2 to 2970 nM. Log KCuL ranged from 12.4 to 13.4. At Y3, the binding capacity of natural ligands was from 32.5 to 1020 nM, with Log KCuL ranging from 12.5 to 13.1. Total dissolved Cu ranged from 7.0 to 770 nM and from 12.7 to 409 nM at Aisics and Y3, respectively. Our results show that the amount of ligand L increases with dissolved Mn (dMn) concentrations, suggesting a hydrothermal origin of the Cu-binding ligands detected. In addition, such high concentrations of Cu-binding ligands can only be explained by an additional abiotic source differing from organic processes. Based on the massive in situ concentrations of free sulfides (up to 300 µM) and on the striking similarities between our log KCuL and the log KCu(HS) previously published, we infer that the Cu-binding ligands could be predominantly inorganic sulfur species in the early buoyant plume of the two vent sites studied.


References

[1]  K. Hirose, Chemical speciation of trace metals in seawater: a review Anal. Sci. 2006, 22, 1055.
Chemical speciation of trace metals in seawater: a reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Whu7o%3D&md5=c4c5eb2c52bbc0c0b83bd3f6cf4fe975CAS |

[2]  J. C. Alt, Subseafloor processes in Mid‐Ocean Ridge hydrothermal systems, in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (Eds S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, R. E. Thomson) Geophysical Monograph Series 1995, Vol. 91, 85–114. (American Geophysical Union, Washington, D.C.).

[3]  J. L. Charlou, J. P. Donval, E. Douville, P. Jean-Baptiste, J. Radford-Knoery, Y. Fouquet, A. Dapoigny, M. Stievenard, Compared geochemical signatures and the evolution of Menez Gwen (37°50′N) and Lucky Strike (37°17′N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge Chem. Geol. 2000, 171, 49.
Compared geochemical signatures and the evolution of Menez Gwen (37°50′N) and Lucky Strike (37°17′N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic RidgeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCrsbc%3D&md5=90838992dda5818d12d87ad01d6e6fa9CAS |

[4]  E. P. Reeves, J. M. McDermott, J. S. Seewald, The origin of methanethiol in midocean ridge hydrothermal fluids Proc. Natl. Acad. Sci. USA 2014, 111, 5474.
The origin of methanethiol in midocean ridge hydrothermal fluidsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFaht7o%3D&md5=87ff0ca4702c22826cf46ba2a0366476CAS |

[5]  T. M. McCollom, J. S. Seewald, C. R. German, Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge Geochim. Cosmochim. Acta 2015, 156, 122.
Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic RidgeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1KgtrY%3D&md5=8be6e6eb5f2dba9a895d93fac8454d7cCAS |

[6]  V. Klevenz, W. Bach, K. Schmidt, M. Hentscher, A. Koschinsky, S. Petersen, Geochemistry of vent fluid particles formed during initial hydrothermal fluid–seawater mixing along the Mid-Atlantic Ridge Geochem. Geophys. Geosyst. 2011, 12, 1.
Geochemistry of vent fluid particles formed during initial hydrothermal fluid–seawater mixing along the Mid-Atlantic RidgeCrossref | GoogleScholarGoogle Scholar |

[7]  J. M. Edmond, C. Measures, R. E. McDuff, L. H. Chan, R. Collier, B. Grant, L. I. Gordon, J. B. Corliss, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data Earth Planet. Sci. Lett. 1979, 46, 1.
Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos dataCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXpslajuw%3D%3D&md5=d7b6201288070605fb76b5a9cb29a250CAS |

[8]  G. W. Luther, T. F. Rozan, M. Taillefert, D. B. Nuzzio, C. Di Meo, T. M. Shank, R. A. Lutz, S. C. Cary, Chemical speciation drives hydrothermal vent ecology Nature 2001, 410, 813.
Chemical speciation drives hydrothermal vent ecologyCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVeks7s%3D&md5=c7f9e5a4a3b92f24d7677d6b932d24ccCAS |

[9]  V. P. Edgcomb, S. J. Molyneaux, M. A. Saito, K. Lloyd, S. Böer, C. O. Wirsen, M. S. Atkins, A. Teske, Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaea Appl. Environ. Microbiol. 2004, 70, 2551.
Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaeaCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtlOhsbo%3D&md5=df4d419f321d973e659b4d3750b6e770CAS |

[10]  S. G. Sander, A. Koschinsky, G. Massoth, M. Stott, K. A. Hunter, Organic complexation of copper in deep-sea hydrothermal vent systems Environ. Chem. 2007, 4, 81.
Organic complexation of copper in deep-sea hydrothermal vent systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1entLc%3D&md5=2b34c9b2722248798eebfddaa4c177e6CAS |

[11]  Z. D. Powell, Voltammetric studies on the stabilisation of dissolved copper in hydrothermal vent fluids, 2014, PhD Thesis, University of Otago, Dunedin, New Zealand.

[12]  C. Kleint, S. Kuzmanovski, Z. Powell, S. I. Bühring, S. G. Sander, A. Koschinsky, Organic Cu-complexation at the shallow marine hydrothermal vent fields off the coast of Milos (Greece), Dominica (Lesser Antilles) and the Bay of Plenty (New Zealand) Mar. Chem. 2015, 173, 244.
Organic Cu-complexation at the shallow marine hydrothermal vent fields off the coast of Milos (Greece), Dominica (Lesser Antilles) and the Bay of Plenty (New Zealand)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVKlt7zM&md5=7fd6f635eb9dbf68a3ca1e62d070d733CAS |

[13]  S. G. Sander, A. Koschinsky, Metal flux from hydrothermal vents increased by organic complexation Nat. Geosci. 2011, 4, 145.
Metal flux from hydrothermal vents increased by organic complexationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFarsbw%3D&md5=c11267c0d151cd2559c3c86abc6e8ef1CAS |

[14]  S. A. Bennett, E. P. Achterberg, D. P. Connelly, P. J. Statham, G. R. Fones, C. R. German, The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes Earth Planet. Sci. Lett. 2008, 270, 157.
The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVOmtLY%3D&md5=16570ec7665af5f7a4f715ec893b271bCAS |

[15]  J. A. Hawkes, D. P. Connelly, M. Gledhill, E. P. Achterberg, The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems Earth Planet. Sci. Lett. 2013, 375, 280.
The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKntr7I&md5=214dab9f463c98f9b8b01634cedee66cCAS |

[16]  C. Kleint, J. A. Hawkes, S. G. Sander, A. Koschinsky, Voltammetric investigation of hydrothermal iron speciation Front. Mar. Sci. 2016, 3, 75.
Voltammetric investigation of hydrothermal iron speciationCrossref | GoogleScholarGoogle Scholar |

[17]  H. Whitby, C. M. G. van den Berg, Evidence for copper-binding humic substances in seawater Mar. Chem. 2015, 173, 282.
Evidence for copper-binding humic substances in seawaterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Kntr3O&md5=67291ea2fc42946418cd9e9bccdecf66CAS |

[18]  C. R. DeMets, R. G. Gordon, D. F. Argus, S. Stein, Current plate motions Geophys. J. Int. 1990, 101, 425.
Current plate motionsCrossref | GoogleScholarGoogle Scholar |

[19]  M. Cannat, A. Briais, C. Deplus, J. Escartín, J. Georgen, J. Lin, S. Mercouriev, C. Meyzen, M. Muller, G. Pouliquen, A. Rabain, P. da Silva, Mid-Atlantic Ridge–Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago Earth Planet. Sci. Lett. 1999, 173, 257.
Mid-Atlantic Ridge–Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma agoCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlWntrw%3D&md5=6cdc364160509440246b019f52841021CAS |

[20]  S. E. Humphris, D. J. Fornari, D. S. Scheirer, C. R. German, L. M. Parson, Geotectonic setting of hydrothermal activity on the summit of Lucky Strike Seamount (37 °17′N, Mid‐Atlantic Ridge) Geochem. Geophys. Geosyst. 2002, 3, 1.
Geotectonic setting of hydrothermal activity on the summit of Lucky Strike Seamount (37 °17′N, Mid‐Atlantic Ridge)Crossref | GoogleScholarGoogle Scholar |

[21]  Y. Fouquet, H. Ondréas, J. L. Charlou, J. P. Donval, J. Radford-Knoery, I. Costa, N. Lourenco, M. K. Tivey, Atlantic lava lakes and hot vents Nature 1995, 377, 201.
Atlantic lava lakes and hot ventsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1GltL0%3D&md5=a2eaca1960514367d4579ef8e2bafeddCAS |

[22]  H. Ondréas, M. Cannat, Y. Fouquet, A. Normand, P. M. Sarradin, J. Sarrazin, Recent volcanic events and the distribution of hydrothermal venting at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge Geochem. Geophys. Geosyst. 2009, 10, 1.
Recent volcanic events and the distribution of hydrothermal venting at the Lucky Strike hydrothermal field, Mid-Atlantic RidgeCrossref | GoogleScholarGoogle Scholar |

[23]  T. Barreyre, J. Escartín, R. Garcia, M. Cannat, E. Mittelstaedt, R. Prados, Structure, temporal evolution, and heat flux estimates from the Lucky Strike deep-sea hydrothermal field derived from seafloor image mosaics Geochem. Geophys. Geosyst. 2012, 13, 1.
Structure, temporal evolution, and heat flux estimates from the Lucky Strike deep-sea hydrothermal field derived from seafloor image mosaicsCrossref | GoogleScholarGoogle Scholar |

[24]  P. M. Sarradin, J. Sarrazin, A. G. Allais, D. Almeida, V. Brandou, A. Boetius, E. Buffier, E. Coiras, A. Colaco, A. Cormack, S. Dentrecolas, D. Desbruyeres, P. Dorval, H. du Buf, J. Dupont, A. Godfroy, M. Gouillou, J. Gronemann, G. Hamel, M. Hamon, U. Hoge, D. Lane, C. Le Gall, D. Leroux, J. Legrand, P. Leon, J. P. Leveque, M. Masson, K. Olu, A. Pascoal, E. Sauter, L. Sanfilippo, E. Savino, L. Sebastiao, R. S. Santos, B. Shillito, P. Simeoni, A. Schultz, J. P. Sudreau, P. Taylor, R. Vuillemin, C. Waldmann, F. Wenzhöfer, F. Zal, EXtreme ecosystem studies in the deep OCEan: Technological developments Oceans 2007 – Europe 2007, 1.
EXtreme ecosystem studies in the deep OCEan: Technological developmentsCrossref | GoogleScholarGoogle Scholar |

[25]  R. Vuillemin, D. Le Roux, P. Dorval, K. Bucas, J. P. Sudreau, M. Hamon, C. Le Gall, P. M. Sarradin, CHEMINI: A new in situ CHEmical MINIaturized analyzer Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 1391.
CHEMINI: A new in situ CHEmical MINIaturized analyzerCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFWrsLc%3D&md5=46e09832f59e5e4e409514799483b91aCAS |

[26]  N. Le Bris, P. M. Sarradin, D. Birot, A. M. Alayse-Danet, A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities Mar. Chem. 2000, 72, 1.
A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communitiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVamsb0%3D&md5=3a295f3586eab560f39ec637b333e1f3CAS |

[27]  K. N. Buck, J. Moffett, K. A. Barbeau, R. M. Bundy, Y. Kondo, J. Wu, The organic complexation of iron and copper: An intercomparison of competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE–ACSV) techniques Limnol. Oceanogr. Methods 2012, 10, 496.
The organic complexation of iron and copper: An intercomparison of competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE–ACSV) techniquesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlyntrbE&md5=587ff170e412cc23a04addbeb1d4f718CAS |

[28]  M. Lucia, A. M. Campos, C. M. G. van den Berg, Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoxime Anal. Chim. Acta 1994, 284, 481.
Determination of copper complexation in sea water by cathodic stripping voltammetry and ligand competition with salicylaldoximeCrossref | GoogleScholarGoogle Scholar |

[29]  C. Garnier, I. Pižeta, S. Mounier, J. Y. Benaïm, M. Branica, Influence of the type of titration and of data treatment methods on metal complexing parameters determination of single and multi-ligand systems measured by stripping voltammetry Anal. Chim. Acta 2004, 505, 263.
Influence of the type of titration and of data treatment methods on metal complexing parameters determination of single and multi-ligand systems measured by stripping voltammetryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKnsrc%3D&md5=070077fb046ed9ed57e47c373af5c471CAS |

[30]  D. Omanović, C. Garnier, I. Pižeta, ProMCC: An all-in-one tool for trace metal complexation studies Mar. Chem. 2015, 173, 25.
ProMCC: An all-in-one tool for trace metal complexation studiesCrossref | GoogleScholarGoogle Scholar |

[31]  I. Pižeta, S. G. Sander, R. J. M. Hudson, D. Omanović, O. Baars, K. A. Barbeau, K. N. Buck, R. M. Bundy, G. Carrasco, P. L. Croot, C. Garnier, L. J. A. Gerringa, M. Gledhill, K. Hirose, Y. Kondo, L. M. Laglera, J. Nuester, M. J. A. Rijkenberg, S. Takeda, B. S. Twining, M. Wells, Interpretation of complexometric titration data: An intercomparison of methods for estimating models of trace metal complexation by natural organic ligands Mar. Chem. 2015, 173, 3.
Interpretation of complexometric titration data: An intercomparison of methods for estimating models of trace metal complexation by natural organic ligandsCrossref | GoogleScholarGoogle Scholar |

[32]  D. Omanović, M. Branica, Automation of voltammetric measurements by polarographic analyser PAR 384B Croat. Chem. Acta 1998, 71, 421.

[33]  I. Pižeta, D. Omanović, M. Branica, The influence of data treatment on the interpretation of experimental results in voltammetry Anal. Chim. Acta 1999, 401, 163.
The influence of data treatment on the interpretation of experimental results in voltammetryCrossref | GoogleScholarGoogle Scholar |

[34]  D. Omanović, C. Garnier, Y. Louis, V. Lenoble, S. Mounier, I. Pižeta, Significance of data treatment and experimental setup on the determination of copper complexing parameters by anodic stripping voltammetry Anal. Chim. Acta 2010, 664, 136.
Significance of data treatment and experimental setup on the determination of copper complexing parameters by anodic stripping voltammetryCrossref | GoogleScholarGoogle Scholar |

[35]  I. Ciglenečki, D. Krznarić, G. R. Helz, Voltammetry of copper sulfide particles and nanoparticles: Investigation of the cluster hypothesis Environ. Sci. Technol. 2005, 39, 7492.
Voltammetry of copper sulfide particles and nanoparticles: Investigation of the cluster hypothesisCrossref | GoogleScholarGoogle Scholar |

[36]  D. Krznarić, G. R. Helz, I. Ciglenečki, Prospect of determining copper sulfide nanoparticles by voltammetry: A potential artifact in supersaturated solutions J. Electroanal. Chem. 2006, 590, 207.
Prospect of determining copper sulfide nanoparticles by voltammetry: A potential artifact in supersaturated solutionsCrossref | GoogleScholarGoogle Scholar |

[37]  D. Krznarić, G. R. Helz, E. Bura-Nakić, D. Jurašin, Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: Copper sulfide example Anal. Chem. 2008, 80, 742.
Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: Copper sulfide exampleCrossref | GoogleScholarGoogle Scholar |

[38]  D. Omanović, Z. Kwokal, A. Goodwin, A. Lawrence, C. E. Banks, R. G. Compton, S. Komorsky-Lovrić, Trace metal detection in Sibenik Bay, Croatia: Cadmium, lead and copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. A case study J. Iran. Chem. Soc. 2006, 3, 128.
Trace metal detection in Sibenik Bay, Croatia: Cadmium, lead and copper with anodic stripping voltammetry and manganese via sonoelectrochemistry. A case studyCrossref | GoogleScholarGoogle Scholar |

[39]  Y. Louis, P. Cmuk, D. Omanović, C. Garnier, V. Lenoble, S. Mounier, I. Pižeta, Speciation of trace metals in natural waters: The influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper Anal. Chim. Acta 2008, 606, 37.
Speciation of trace metals in natural waters: The influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copperCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWisrfO&md5=e6b829f25a3f2f86622a095272f7fe6cCAS |

[40]  L. Cotte, M. Waeles, B. Pernet-Coudrier, P. M. Sarradin, C. Cathalot, R. D. Riso, A comparison of in situ vs. ex situ filtration methods on the assessment of dissolved and particulate metals at hydrothermal vents Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 105, 186.
A comparison of in situ vs. ex situ filtration methods on the assessment of dissolved and particulate metals at hydrothermal ventsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFKnsb3E&md5=2622b58d454fd826a1f28fb32d6bdd78CAS |

[41]  S. L. Simpson, S. C. Apte, G. E. Batley, Sample storage artifacts affecting the measurement of dissolved copper in sulfidic waters Anal. Chem. 1998, 70, 4202.
Sample storage artifacts affecting the measurement of dissolved copper in sulfidic watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslartrc%3D&md5=824b08ffdeb321004cffdc312be64ff8CAS |

[42]  R. Benner, M. Strom, A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation Mar. Chem. 1993, 41, 153.
A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtV2htrY%3D&md5=9d31203f505724d0adbcec825dcf3125CAS |

[43]  J. P. Cowen, G. J. Massoth, R. A. Feely, Scavenging rates of dissolved manganese in a hydrothermal vent plume Deep Sea Res. Part A 1990, 37, 1619.
Scavenging rates of dissolved manganese in a hydrothermal vent plumeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktFCqsb4%3D&md5=2f875ac3a2c1f1ccf60c5c77c75fb735CAS |

[44]  M. P. Field, R. M. Sherrell, Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise: Slow Fe(II) oxidation kinetics in Pacific plumes Geochim. Cosmochim. Acta 2000, 64, 619.
Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise: Slow Fe(II) oxidation kinetics in Pacific plumesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ersbc%3D&md5=4e30a3443a145bff38b582e778382356CAS |

[45]  P. A. Yeats, J. A. Dalziel, S. B. Moran, A comparison of dissolved and particulate Mn and Al distributions in the Western North-Atlantic Oceanol. Acta 1992, 15, 609.
| 1:CAS:528:DyaK3sXktlersbg%3D&md5=1a96351c7e73e689d8f5a9467e7f3653CAS |

[46]  P. J. M. Buckley, C. M. G. van den Berg, Copper complexation profiles in the Atlantic Ocean: A comparative study using electrochemical and ion exchange techniques Mar. Chem. 1986, 19, 281.
Copper complexation profiles in the Atlantic Ocean: A comparative study using electrochemical and ion exchange techniquesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltVahsbc%3D&md5=1a6f623fa264c664e5fc53d28de7e198CAS |

[47]  J. E. Jacquot, J. W. Moffett, Copper distribution and speciation across the International GEOTRACES Section GA03 Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 116, 187.
Copper distribution and speciation across the International GEOTRACES Section GA03Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVertL%2FJ&md5=4d5a8622f92d1c99f8213a2728d25708CAS |

[48]  M. Waeles, L. Cotte, B. Pernet-Coudrier, V. Chavagnac, C. Cathalot, T. Leleu, A. Laës-Huon, A. Perhirin, R. D. Riso, P.-M. Sarradin, On the early fate of hydrothermal iron at deep-sea vents: A reassessment after in-situ filtration Geophys. Res. Lett. 2017, 44, 4233.
On the early fate of hydrothermal iron at deep-sea vents: A reassessment after in-situ filtrationCrossref | GoogleScholarGoogle Scholar |

[49]  I. Ciglenečki, B. Ćosović, Electrochemical study of sulfur species in seawater and marine phytoplankton cultures Mar. Chem. 1996, 52, 87.
Electrochemical study of sulfur species in seawater and marine phytoplankton culturesCrossref | GoogleScholarGoogle Scholar |

[50]  R. Al-Farawati, C. M. G. van den Berg, Metal–sulfide complexation in seawater Mar. Chem. 1999, 63, 331.
Metal–sulfide complexation in seawaterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslKiu78%3D&md5=723cf2760deeec9aa32f2d115389d4b5CAS |

[51]  I. Ciglenečki, B. Ćosović, Electrochemical determination of thiosulfate in seawater in the presence of elemental sulfur and sulfide Electroanalysis 1997, 9, 775.
Electrochemical determination of thiosulfate in seawater in the presence of elemental sulfur and sulfideCrossref | GoogleScholarGoogle Scholar |

[52]  F. Wang, A. Tessier, J. Buffle, Voltammetric determination of elemental sulfur in pore waters Limnol. Oceanogr. 1998, 43, 1353.
Voltammetric determination of elemental sulfur in pore watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlOnu7g%3D&md5=b31fe815ad090197683ce84704f0d958CAS |

[53]  I. Ciglenečki, E. Bura-Nakić, M. Marguš, Zinc sulfide surface formation on Hg electrode during cyclic voltammetric scan: an implication for previous and future research studies on metal sulfide systems J. Solid State Electrochem. 2012, 16, 2041.
Zinc sulfide surface formation on Hg electrode during cyclic voltammetric scan: an implication for previous and future research studies on metal sulfide systemsCrossref | GoogleScholarGoogle Scholar |

[54]  I. Ciglenečki, M. Marguš, E. Bura-Nakić, I. Milanović, Electroanalytical methods in characterization of sulfur species in aqueous environment J. Electrochem. Sci. Eng. 2014, 4, 155.
Electroanalytical methods in characterization of sulfur species in aqueous environmentCrossref | GoogleScholarGoogle Scholar |

[55]  I. Milanović, D. Krznarić, E. Bura-Nakić, I. Ciglenečki, Deposition and dissolution of metal sulfide layers at the Hg electrode surface in seawater electrolyte conditions Environ. Chem. 2014, 11, 167.
Deposition and dissolution of metal sulfide layers at the Hg electrode surface in seawater electrolyte conditionsCrossref | GoogleScholarGoogle Scholar |

[56]  T. F. Rozan, S. M. Theberge, G. Luther, Quantifying elemental sulfur (S0), bisulfide (HS−) and polysulfides (Sx2−) using a voltammetric method Anal. Chim. Acta 2000, 415, 175.
Quantifying elemental sulfur (S0), bisulfide (HS) and polysulfides (Sx2−) using a voltammetric methodCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjt1Squr4%3D&md5=2f76ab14b7aded1ac4ec339f059d17a1CAS |

[57]  E. Bura-Nakić, D. Krznarić, D. Jurašin, G. R. Helz, I. Ciglenečki, Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters Anal. Chim. Acta 2007, 594, 44.
Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural watersCrossref | GoogleScholarGoogle Scholar |

[58]  E. Bura-Nakić, D. Krznarić, G. R. Helz, I. Ciglenečki, Characterization of iron sulfide species in model solutions by cyclic voltammetry. Revisiting an old problem Electroanalysis 2011, 23, 1376.
Characterization of iron sulfide species in model solutions by cyclic voltammetry. Revisiting an old problemCrossref | GoogleScholarGoogle Scholar |

[59]  R. Al-Farawati, C. M. G. van den Berg, The determination of sulfide in seawater by flow-analysis with voltammetric detection Mar. Chem. 1997, 57, 277.
The determination of sulfide in seawater by flow-analysis with voltammetric detectionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks12mtrk%3D&md5=68cccf2643d03bf96c525f43d2aa5616CAS |

[60]  L. M. Laglera, C. M. G. van den Berg, Copper complexation by thiol compounds in estuarine waters Mar. Chem. 2003, 82, 71.
Copper complexation by thiol compounds in estuarine watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktF2rs7c%3D&md5=9ec1e5d4e284e5c0bf029ef01d26cbb1CAS |

[61]  A. Gartman, M. Yücel, A. S. Madison, D. W. Chu, S. Ma, C. P. Janzen, E. L. Becker, R. A. Beinart, P. R. Girguis, G. W. Luther, Sulfide oxidation across diffuse flow zones of hydrothermal vents Aquat. Geochem. 2011, 17, 583.
Sulfide oxidation across diffuse flow zones of hydrothermal ventsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2msrzK&md5=7431e152e916b4bea4e47168a1745f83CAS |

[62]  V. Klevenz, S. G. Sander, M. Perner, A. Koschinsky, Amelioration of free copper by hydrothermal vent microbes as a response to high copper concentrations Chem. Ecol. 2012, 28, 405.
Amelioration of free copper by hydrothermal vent microbes as a response to high copper concentrationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlyntL%2FP&md5=78cd9a60e478c5cdba1d404d9643815bCAS |

[63]  A. G. González, N. Pérez-Almeida, J. Magdalena Santana-Casiano, F. J. Millero, M. González-Dávila, Redox interactions of Fe and Cu in seawater Mar. Chem. 2016, 179, 12.
Redox interactions of Fe and Cu in seawaterCrossref | GoogleScholarGoogle Scholar |

[64]  M. F. C. Leal, C. M. G. van den Berg, Evidence for strong copper(I) complexation by organic ligands in seawater Aquat. Geochem. 1998, 4, 49.
Evidence for strong copper(I) complexation by organic ligands in seawaterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjurs%3D&md5=70a313382dffdacfdcd8568bacad7318CAS |

[65]  M. J. Walsh, B. A. Ahner, Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes J. Inorg. Biochem. 2013, 128, 112.
Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SksrfK&md5=ab1dde243e51b9d204231923d240bd8cCAS |

[66]  N. Pérez-Almeida, M. González-Dávila, J. Magdalena Santana-Casiano, A. G. González, M. Suárez de Tangil, Oxidation of Cu(I) in seawater at low oxygen concentrations Environ. Sci. Technol. 2013, 47, 1239.
Oxidation of Cu(I) in seawater at low oxygen concentrationsCrossref | GoogleScholarGoogle Scholar |

[67]  D. A. Hansell, Recalcitrant dissolved organic carbon fractions Annu. Rev. Mar. Sci. 2013, 5, 421.
Recalcitrant dissolved organic carbon fractionsCrossref | GoogleScholarGoogle Scholar |

[68]  L. Guo, P. H. Santschi, K. W. Warnken, Dynamics of dissolved organic carbon (DOC) in oceanic environments Limnol. Oceanogr. 1995, 40, 1392.
Dynamics of dissolved organic carbon (DOC) in oceanic environmentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpvVOltg%3D%3D&md5=ef19144cef27bc231b5f0763be8272fbCAS |

[69]  D. A. Hansell, C. A. Carlson, Deep-ocean gradients in the concentration of dissolved organic carbon Nature 1998, 395, 263.
Deep-ocean gradients in the concentration of dissolved organic carbonCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFartL8%3D&md5=32cf1dfb61143700801c98443e03e7a7CAS |

[70]  S. Q. Lang, D. A. Butterfield, M. D. Lilley, H. Paul Johnson, J. I. Hedges, Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems Geochim. Cosmochim. Acta 2006, 70, 3830.
Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFGhsr8%3D&md5=91506e8cc220d384e03f0f9a980ede5dCAS |

[71]  J. A. Hawkes, P. E. Rossel, A. Stubbins, D. Butterfield, D. P. Connelly, E. P. Achterberg, A. Koschinsky, V. Chavagnac, C. T. Hansen, W. Bach, T. Dittmar, Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation Nat. Geosci. 2015, 8, 856.
Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFOku7fE&md5=9825ff379eeadbad9e5ab3e0e5a7a7f2CAS |

[72]  S. A. Bennett, P. J. Statham, D. R. H. Green, N. Le Bris, J. M. McDermott, F. Prado, O. J. Rouxel, K. Von Damm, C. R. German, Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50′N Deep Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 922.
Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50′NCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2iur3O&md5=c315602cc6bb309d55af78674f98f369CAS |

[73]  J. A. Hawkes, C. T. Hansen, T. Goldhammer, W. Bach, T. Dittmar, Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions Geochim. Cosmochim. Acta 2016, 175, 68.
Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFKkur3K&md5=591d622a42f7beac91fc56fdbcb4bfffCAS |

[74]  C. Konn, J. L. Charlou, N. G. Holm, O. Mousis, The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge Astrobiology 2015, 15, 381.
The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic RidgeCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXos1Ojt7g%3D&md5=188247d7334f4a1b0fcae38378ee5a15CAS |

[75]  M. D. Schulte, K. L. Rogers, Thiols in hydrothermal solution: standard partial molal properties and their role in the organic geochemistry of hydrothermal environments Geochim. Cosmochim. Acta 2004, 68, 1087.
Thiols in hydrothermal solution: standard partial molal properties and their role in the organic geochemistry of hydrothermal environmentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVCgtrY%3D&md5=a0bcc2848e568c0f7ba041cfca2c6fa5CAS |

[76]  J. L. Charlou, J. P. Donval, C. Konn, H. Ondréas, Y. Fouquet, P. Jean‐Baptiste, E. Fourré, High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic‐hosted hydrothermal systems on the Mid‐Atlantic Ridge, in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges (Eds P. A. Rona, C. W. Devey, J. Dyment, B. J. Murton). Geophysical Monograph Series 2010, Vol. 188, 265–296 (American Geophysical Union: Washington, D.C.).

[77]  M. Bailly-Bechet, M. Kerszberg, F. Gaill, F. Pradillon, A modeling approach of the influence of local hydrodynamic conditions on larval dispersal at hydrothermal vents J. Theor. Biol. 2008, 255, 320.
A modeling approach of the influence of local hydrodynamic conditions on larval dispersal at hydrothermal ventsCrossref | GoogleScholarGoogle Scholar |

[78]  M. C. Lohan, D. W. Crawford, D. A. Purdie, P. J. Statham, Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growth Limnol. Oceanogr. 2005, 50, 1427.
Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growthCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCrsrnM&md5=e99b36033d3154a4c086b90ffd85daacCAS |

[79]  B. W. Mountain, T. M. Seward, Hydrosulfide/sulfide complexes of copper(I): Experimental confirmation of the stoechiometry and stability of Cu(HS)2− to elevated temperatures Geochim. Cosmochim. Acta 2003, 67, 3005.
Hydrosulfide/sulfide complexes of copper(I): Experimental confirmation of the stoechiometry and stability of Cu(HS)2 to elevated temperaturesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFaqurg%3D&md5=b833dbb2ce6882579567ebd94508e525CAS |

[80]  J. Z. Zhang, F. J. Millero, Investigation of metal sulfide complexes in sea water using cathodic stripping square wave voltammetry Anal. Chim. Acta 1994, 284, 497.
Investigation of metal sulfide complexes in sea water using cathodic stripping square wave voltammetryCrossref | GoogleScholarGoogle Scholar |

[81]  E. Mittelstaedt, J. Escartín, N. Gracias, J. A. Olive, T. Barreyre, A. Davaille, M. Cannat, R. Garcia, Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field Geochem. Geophys. Geosyst. 2012, 13, 1.
Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal fieldCrossref | GoogleScholarGoogle Scholar |

[82]  T. F. Rozan, G. Benoit, G. W. Luther, Measuring metal sulfide complexes in oxic river waters with square wave voltammetry Environ. Sci. Technol. 1999, 33, 3021.
Measuring metal sulfide complexes in oxic river waters with square wave voltammetryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFSnsb0%3D&md5=c2bbef680a137b6fa6ae40802d67681dCAS |

[83]  P. J. Superville, I. Pižeta, D. Omanović, G. Billon, Identification and on-line monitoring of reduced sulphur species (RSS) by voltammetry in oxic waters Talanta 2013, 112, 55.
Identification and on-line monitoring of reduced sulphur species (RSS) by voltammetry in oxic watersCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Cnt7g%3D&md5=a370fc8651f94379413823eaf1c7214fCAS |