Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Comparative ecotoxicity study of glycerol-biobased solvents

Eduardo Perales A , Cristina Belén García A , Laura Lomba A , José Ignacio García B , Elísabet Pires B , Mari Carmen Sancho C , Enrique Navarro C and Beatriz Giner A D
+ Author Affiliations
- Author Affiliations

A Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.

B Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, Consejo Superior de Investigaciones Científicas (CSIC), Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain.

C Instituto Pirenaico de Ecología (CSIC), Avenida Montañana 1005, 50059 Zaragoza, Spain.

D Corresponding author. Email: bginer@usj.es

Environmental Chemistry 14(6) 370-377 https://doi.org/10.1071/EN17082
Submitted: 17 April 2017  Accepted: 22 June 2017   Published: 28 November 2017

Environmental context. The search for alternative solvents to prevent environmental damage is one of the main interests in ‘green’ sciences. Five of these new substances from biodiesel production were evaluated to assess their negative environmental effects. The results obtained showed that three of these chemicals may be harmless for short exposure in aquatic biomodels. Although more tests are required, this family of compounds promises to be safe and useful for industrial purposes.

Abstract. Glycerol-biobased ethers have a high potential as solvents owing to their chemical inertness and diversity, which allows modulation of their properties, such as polarity, hydrophobicity or viscosity, depending on the specific needs in each case. Despite their renewable source, the environmental compatibility of these solvents needs to be checked. The acute ecotoxicity of five glycerol-derived solvents (3-ethoxy-1,2-propanediol, 1,3-diethoxy-2-propanol, 3-butoxy-1,2-propanediol , 1,3-dibutoxy-2-propanol and 1,2,3-tributoxypropane ) was evaluated in a systematic study using several bioindicators covering the trophic chain (the crustacean Daphnia magna, the fish Danio rerio and the green alga Chlamydomonas reinhardtii). These results were compared with the previously studied bioindicator Vibrio fischeri. According to the hypothesis of the present work, the toxicity of these solvents increased as a function of their lipophilicity, which is related to the increase in the number and length of the alkyl chains in the basic structure; accordingly, the least toxic compound for all the aquatic organisms was 3-ethoxy-1,2-propanediol and the most toxic solvent was 1,2,3-tributoxypropane, except in the case of D. rerio and V. fischeri, with 1,3-dibutoxy-2-propanol the most toxic chemical. Potential damage caused by eventual emissions, was evaluated using the Environmental Health and Safety Approach, a methodology used for detecting risks related to the environment and the human health. Using available physicochemical and toxicity data, each chemical compound receives a score for the categories health, safety and environment. The best candidates considered as least dangerous for a short exposure time according to the studied biomodels are 3-ethoxy-1,2-propanediol, 3-butoxy-1,2-propanediol and 1,3-diethoxy-2-propanol.

Additional keywords: ecotoxicology, chemical toxicology.


References

[1]  B. Katryniok, H. Kimura, E. Skrzyńska, J. S. Girardon, P. Fongarland, M. Capron, R. Ducoulombier, N. Mimura, S. Paul, F. Dumeignil, Selective catalytic oxidation of glycerol: perspectives for high-value chemicals. Green Chem. 2011, 13, 1960.
Selective catalytic oxidation of glycerol: perspectives for high-value chemicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslGhs7w%3D&md5=a6facb7770abe762c838b3a504d0206cCAS |

[2]  M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. Della Pina, From glycerol to value-added products. Angew. Chem. Int. Ed. 2007, 46, 4434.
From glycerol to value-added products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVOlsbg%3D&md5=b3fef0e327f9ba3f5200515f9d5dc2a8CAS |

[3]  C. H. Zhou, J. N. Beltramini, Y. X. Fana, G. Q. Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 2008, 37, 527.
Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals.Crossref | GoogleScholarGoogle Scholar |

[4]  A. E. Díaz-Álvarez, J. Francos, P. Crochet, V. Cadierno, Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. Curr. Green Chem 2014, 1, 51.
Recent advances in the use of glycerol as green solvent for synthetic organic chemistry.Crossref | GoogleScholarGoogle Scholar |

[5]  A. E. Díaz-Álvarez, J. Francos, B. Lastra-Barreira, P. Crochet, V. Cadierno, Glycerol and derived solvents: new sustainable reaction media for organic synthesis. Chem. Commun. 2011, 47, 6208.
Glycerol and derived solvents: new sustainable reaction media for organic synthesis.Crossref | GoogleScholarGoogle Scholar |

[6]  J. I. García, H. García-Marín, E. Pires, Glycerol-based solvents: synthesis, properties and applications. Green Chem. 2014, 16, 1007.
Glycerol-based solvents: synthesis, properties and applications.Crossref | GoogleScholarGoogle Scholar |

[7]  Y. Gu, F. Jérôme, Glycerol as a sustainable solvent for green chemistry. Green Chem. 2010, 12, 1127.
Glycerol as a sustainable solvent for green chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlyrtbs%3D&md5=bfca881acfddbdb401764b38ee4c410fCAS |

[8]  J. I. García, H. García-Marín, J. A. Mayoral, P. Pérez, Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers. Green Chem. 2010, 12, 426.
Green solvents from glycerol. Synthesis and physico-chemical properties of alkyl glycerol ethers.Crossref | GoogleScholarGoogle Scholar |

[9]  J. I. García, H. García-Marín, J. A. Mayoral, P. Pérez, Quantitative structure–property relationships prediction of some physico-chemical properties of glycerol-based solvents. Green Chem. 2013, 15, 2283.
Quantitative structure–property relationships prediction of some physico-chemical properties of glycerol-based solvents.Crossref | GoogleScholarGoogle Scholar |

[10]  A. Wolfson, A. Snezhko, T. Meyouhas, D. Tavor, Glycerol derivatives as green reaction mediums. Green Chem. Lett. Rev. 2012, 5, 7.
Glycerol derivatives as green reaction mediums.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGltLg%3D&md5=33144806874a11e8ba835339381574dbCAS |

[11]  J. I. García, E. Pires, L. Aldea, L. Lomba, E. Perales, B. Giner, Ecotoxicity studies of glycerol ethers in Vibrio fischeri: checking the environmental impact of glycerol-derived solvents. Green Chem. 2015, 17, 4326.
Ecotoxicity studies of glycerol ethers in Vibrio fischeri: checking the environmental impact of glycerol-derived solvents.Crossref | GoogleScholarGoogle Scholar |

[12]  E. Perales, C. B. García, L. Lomba, L. Aldea, J. I. García, B. Giner, Comparative ecotoxicology study of two neoteric solvents: imidazolium ionic liquid vs. glycerol derivative. Ecotoxicol. Environ. Saf. 2016, 132, 429.
Comparative ecotoxicology study of two neoteric solvents: imidazolium ionic liquid vs. glycerol derivative.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xpt1emt7k%3D&md5=e2d25ba4f2957f7d1bf14f4d0dfb0f18CAS |

[13]  R. E. Connon, J. Geist, I. Werner, Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 2012, 12, 12741.
| 1:CAS:528:DC%2BC38XhsVaktLnM&md5=6f2a070556c87f95b26b983f6aa943b3CAS |

[14]  A. Levet, C. Bordes, Y. Clément, P. Mignon, C. Morell, H. Chermette, P. Marote, P. Lantéri, Acute aquatic toxicity of organic solvents modeled by QSARs. J. Mol. Model. 2016, 22, 288.
Acute aquatic toxicity of organic solvents modeled by QSARs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2snkslehsQ%3D%3D&md5=3bdaf240220b42123d28c8060a8afbacCAS |

[15]  J. R. Wheeler, K. M. Y. Leung, D. Morrit, N. Sorokin, H. Rogers, R. Toy, M. Holt, P. Whitehouse, M. Crane, Freshwater to saltwater toxicity extrapolation using species sensitivity distributions. Environ. Toxicol. Chem. 2002, 21, 2459.
Freshwater to saltwater toxicity extrapolation using species sensitivity distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVGnt70%3D&md5=b09c3aee3aa52ab66883b2f3250abcccCAS |

[16]  B. Isomaa, H. Lilius, The urgent need for in vitro tests in ecotoxicology. Toxicol. In Vitro 1995, 9, 821.
The urgent need for in vitro tests in ecotoxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XislWgtA%3D%3D&md5=4f07b4952475a4a5f6de112b857040c7CAS |

[17]  J. D. Hughes, J. Blagg, D. A. Price, S. Bailey, G. A. DeCrescenzo, R. V. Devraj, E. Ellsworth, Y. M. Fobian, M. E. Gibbs, R.W. Gilles, N. Greene, E. Huang, T. Krieger-Burke, J. Loesel, T. Wager, L. Whiteley, Y. Zhang, Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 2008, 18, 4872.
Physiochemical drug properties associated with in vivo toxicological outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOnsbjE&md5=0dfb17f34ea1894e3e516b76dda13b8cCAS |

[18]  I. Szivák, R. Behra, L. Sigg, Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae). J. Phycol. 2009, 45, 427.
Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae).Crossref | GoogleScholarGoogle Scholar |

[19]  International Organization for Standardisation Water Quality – Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test) ISO 11348–3 2007 (International Organization for Standardisation: Geneva).

[20]  L. Lomba, S. Muniz, M. R. Pino, E. Navarro, B. Giner, Ecotoxicity studies of the levulinate ester series. Ecotoxicology 2014, 23, 1484.
Ecotoxicity studies of the levulinate ester series.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Gntb3M&md5=bcc2b22b61ffc10b7a2e4c3940cb16c0CAS |

[21]  V. L. K. Jennings, M. H. Rayner-Brandes, D. J. Bird, Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Res. 2001, 35, 3448.
Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslaguro%3D&md5=23ccb93ef9aca593f9c58dce77a32923CAS |

[22]  Organisation for Economic Co-operation and Development (OECD), Daphnia magna Acute Immobilization Test – Test Guideline 211 1984 (OECD: Paris, France).

[23]  Organisation for Economic Co-operation and Development (OECD), Daphnia magna Acute Immobilization Test –Test Guideline 211 2004 (OECD: Paris, France).

[24]  Organisation for Economic Co-operation and Development (OECD), Fish Embryo Acute Toxicity (FET) Test –Test Guideline 236 2013 (OECD: Paris, France).

[25]  G. Bringmann, R. Kühn, Findings of the adverse effects of water contaminants on Daphnia magna. Z für Wasser Abwass. For. 1977, 10, 161.
| 1:CAS:528:DyaE1cXpvFygsQ%3D%3D&md5=8521d26194f009b162657bbd552aa453CAS |

[26]  D. R. M. Passino, S. B. Smith, Acute bioassays and hazard evaluation of recently identified contaminants in Great Lakes fish. Environ. Toxicol. Chem. 1987, 6, 901.
Acute bioassays and hazard evaluation of recently identified contaminants in Great Lakes fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhslGj&md5=f2d85fa70ba840c6a60415d6419f5504CAS |

[27]  M. Sutter, L. Pehlivan, R. Lafon, W. Dayoub, Y. Raoul, E. Métay, M. Lemaire, 1,2,3 Trimethoxypropane, a glycerol-based solvent with low toxicity: new utilization for the reduction of nitrile, nitro, ester, and acid functional groups with TMDS and a metal catalyst. Green Chem. 2013, 15, 3020.
1,2,3 Trimethoxypropane, a glycerol-based solvent with low toxicity: new utilization for the reduction of nitrile, nitro, ester, and acid functional groups with TMDS and a metal catalyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cmu73E&md5=e78f6785227a8104a2376d1100d21ddcCAS |

[28]  Y. Gao, Y. Ji, T. An, Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity: influence of alkyl chain length. Water Res. 2016, 91, 77.
Theoretical investigation on the kinetics and mechanisms of hydroxyl radical-induced transformation of parabens and its consequences for toxicity: influence of alkyl chain length.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlvFWgtQ%3D%3D&md5=9c7481ce44ff26e8f3e672bd53d1e2a4CAS |

[29]  X. J. Zhang, H. W. Qin, L. M. Su, W. C. Qin, M. Y. Zou, L. X. Sheng, Y. H. Zhao, M. H. Abraham, Interspecies correlations of toxicity to eight aquatic organisms: theoretical considerations. Sci. Total Environ. 2010, 408, 4549.
Interspecies correlations of toxicity to eight aquatic organisms: theoretical considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtrjP&md5=3fb0ed95671d53a3dd7ba257bb9ae565CAS |

[30]  H. Guasch, S. Sabater, Light history influences the sensitivity to atrazine in periphytic algae. J. Phycol. 1998, 34, 233.
Light history influences the sensitivity to atrazine in periphytic algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFWmsr0%3D&md5=bd25b833f197e27e06e485e17091a2d4CAS |

[31]  W. Brack, H. Rottler, H. Frank, Volatile fractions of landfill leachates and their effect on Chlamydomonas reinhardtii: in vivo chlorophyll A fluorescence. Environ. Toxicol. Chem. 1998, 17, 1982.
Volatile fractions of landfill leachates and their effect on Chlamydomonas reinhardtii: in vivo chlorophyll A fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlCgs7s%3D&md5=a6292a9e7b437d92bec87e0433e55ccfCAS |

[32]  J. H. Lin, A. Y. H. Lu, Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev. 1997, 49, 403.
| 1:CAS:528:DyaK1cXjslSrtQ%3D%3D&md5=7a76fe1fab01542aca7538867d602f18CAS |

[33]  G. Koller, U. Fischer, K. Hungerbuhler, Assessing safety, health, and environmental impact early during process development. Ind. Eng. Chem. Res. 2000, 39, 960.
Assessing safety, health, and environmental impact early during process development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFyiu7Y%3D&md5=51d9aca7c73a504d867f9185773822f8CAS |

[34]  US Environmental Protection Agency (EPA) Estimation Programs Interface Suite(EPI suite) for Microsoft® Windows, v 4.11 2016 (US EPA: Washington, DC).

[35]  S. N. Khadzhibekov, S. R. Tulyaganov, A. Sultankulov, C. H. S. H. Kadyrov, Some aspects of synthesis of 1,3-dialkoxy-2-propanols. Dokl. Akad. Nauk. UzSSR. 1985, 40.
| 1:CAS:528:DyaL28XktVKks7c%3D&md5=9e79afd24914e2ff7fed5546e4cdd8f2CAS |

[36]  S. M. Sambou, Chimie du glycerol pour la synthèse de dérivés du glycérol applicables comme solvants ou diluants réactifs 2005, Ph.D. Thesis, University of Toulouse, France.

[37]  US Environmental Protection Agency (EPA) Toxicity Estimation Software Tool (TEST). A Program to Estimate Toxicity from Molecular Structure 2016 (US EPA: Washington, DC).

[38]  I. Smallwood, Handbook of Organic Solvent Properties 1996 (John Wiley & Sons: New York).

[39]  W. M. Meylan, P. H. Howard, R. S. Boethling, D. Aronson, H. Printup, S. Gouchie, Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ. Toxicol. Chem. 1999, 18, 664.
Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVGitr0%3D&md5=6f1d2896f47d912a086bca00e2f0defaCAS |

[40]  M. I. Petoumenou, F. Pizzo, J. Cester, A. Fernández, E. Benfenati, Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models. Environ. Res. 2015, 142, 529.
Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVegu7rL&md5=70ea515cd3eba26d478f856461ae16f3CAS |