Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Studying selenium and sulfur volatilisation by marine algae Emiliania huxleyi and Thalassiosira oceanica in culture

Katja E. Luxem A B C , Bas Vriens A C , Renata Behra A and Lenny H. E. Winkel A C D
+ Author Affiliations
- Author Affiliations

A Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.

B Present address: Department of Geosciences, Princeton University, Princeton, NJ 08540, USA.

C Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland.

D Corresponding author. Email: lenny.winkel@eawag.ch; lwinkel@ethz.ch

Environmental Chemistry 14(4) 199-206 https://doi.org/10.1071/EN16184
Submitted: 30 October 2016  Accepted: 23 February 2017   Published: 5 April 2017

Environmental context. Volatile selenium compounds from the oceans may ultimately be an important selenium source for agricultural soils. It has been hypothesised that marine algae are responsible for volatile selenium emissions, but in laboratory experiments, we observed minimal volatile selenium production by two marine algae known to produce large amounts of volatile sulfur. Instead, we found hints that bacterial processes may be important in the production of volatile selenium in the oceans.

Abstract. Volatile methylated selenium compounds, especially dimethylselenide, are thought to comprise the majority of marine selenium emissions. Despite their potential importance for the global redistribution of this trace element, which is essential for human health, little is known about the algal production of volatile organic selenium compounds. Previous studies have found correlations between dissolved dimethylselenide concentrations, dimethylsulfide concentrations (the sulfur analogue of dimethylselenide) and proxies for algal activity, most notably during a bloom of the coccolithophorid Emiliania huxleyi. In culturing studies, we investigated the ability of three globally important marine algal species, E. huxleyi, Phaeocystis globosa and the diatom Thalassiosira oceanica, to produce dimethylselenide. Despite substantial uptake of selenium and the production of volatile sulfur, E. huxleyi and T. oceanica produced negligible volatile selenium (<2 nM). P. globosa produced low amounts of volatile selenium (~8 nM), but grew poorly in our laboratory. However, cultures of marine bacteria and mixed bacterial–algal cultures showed that substantial amounts of volatile selenium can be produced in the presence of marine bacteria. In addition, a culture of marine bacteria alone produced ~50 nM volatile selenium, far more than axenic cultures of E. huxleyi when exposed to equivalent selenite concentrations. Our results hint that marine algae may be of minor importance in the direct production of volatile selenium in the oceans, and suggest that the production of these compounds in the marine biosphere may instead be controlled by bacterial activity.


References

[1]  L. H. E. Winkel, C. A. Johnson, M. Lenz, T. Grundl, O. X. Leupin, M. Amini, L. Charlet, Environmental selenium research: from microscopic processes to global understanding. Environ. Sci. Technol. 2012, 46, 571.
Environmental selenium research: from microscopic processes to global understanding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCms7rL&md5=48fdc4afdbe4112b0858f3f925cc438fCAS |

[2]  L. Winkel, B. Vriens, G. Jones, L. Schneider, E. Pilon-Smits, G. Bañuelos, Selenium cycling across soil–plant–atmosphere interfaces: a critical review. Nutrients 2015, 7, 4199.
Selenium cycling across soil–plant–atmosphere interfaces: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFKmsbrE&md5=eb5b5a26f5aed0d90e632332e984b9ecCAS |

[3]  D. Amouroux, P. S. Liss, E. Tessier, M. Hamren-Larsson, O. F. X. Donard, Role of oceans as biogenic sources of selenium. Earth Planet. Sci. Lett. 2001, 189, 277.
Role of oceans as biogenic sources of selenium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVCltb4%3D&md5=7f6e0fdf01eaa98b3033406822e86c06CAS |

[4]  H. Wen, J. Carignan, Reviews on atmospheric selenium: emissions, speciation and fate. Atmos. Environ. 2007, 41, 7151.
Reviews on atmospheric selenium: emissions, speciation and fate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2qsbbF&md5=1a4e94a1c37a892d0ecd6ca950196931CAS |

[5]  H. Wen, J. Carignan, Ocean to continent transfer of atmospheric Se as revealed by epiphytic lichens. Environ. Pollut. 2009, 157, 2790.
Ocean to continent transfer of atmospheric Se as revealed by epiphytic lichens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Cjtro%3D&md5=10b19c682f1ac22ef209aada2de79c2bCAS |

[6]  T. G. Chasteen, Volatile chemical species of selenium, in Environmental Chemistry of Selenium (Eds W. T. Frankenberger Jr., R. A. Engberg) 1998, pp. 589–612 (Marcel Dekker: New York).

[7]  D. Amouroux, O. F. X. Donard, Maritime emission of selenium to the atmosphere in Eastern Mediterranean seas. Geophys. Res. Lett. 1996, 23, 1777.
Maritime emission of selenium to the atmosphere in Eastern Mediterranean seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvV2kuro%3D&md5=cf9325c3697d72b45902627f8f97d94cCAS |

[8]  D. Amouroux, O. F. X. Donard, Evasion of selenium to the atmosphere via biomethylation processes in the Gironde estuary, France. Mar. Chem. 1997, 58, 173.
Evasion of selenium to the atmosphere via biomethylation processes in the Gironde estuary, France.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotFSmsrY%3D&md5=d592928070118e79be0ac31130325ee1CAS |

[9]  P. S. Liss, Trace gas emissions from the marine biosphere. Philos. Trans. R. Soc., A 2007, 365, 1697.
Trace gas emissions from the marine biosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Kks7w%3D&md5=30fad381030df5b0080339f9c1990696CAS |

[10]  A. J. Kettle, M. O. Andreae, Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. D Atmospheres 2000, 105, 26793.
Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFGit7c%3D&md5=5754786961480c004888a30e3170eec3CAS |

[11]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=26087887143226eb6a82d61163de8e3dCAS |

[12]  P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 2011, 480, 51.
The case against climate regulation via oceanic phytoplankton sulphur emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGku73O&md5=c435ec6230e56b52e29d144c9d695897CAS |

[13]  N. M. Levine, V. A. Varaljay, D. A. Toole, J. W. H. Dacey, S. C. Doney, M. A. Moran, Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea. Environ. Microbiol. 2012, 14, 1210.
Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVantL7N&md5=22a2a84c274c288a865068102a014db1CAS |

[14]  N. Gypens, A. V. Borges, G. Speeckaert, C. Lancelot, The dimethylsulfide cycle in the eutrophied southern North Sea: a model study integrating phytoplankton and bacterial processes. PLoS One 2014, 9, e85862.
The dimethylsulfide cycle in the eutrophied southern North Sea: a model study integrating phytoplankton and bacterial processes.Crossref | GoogleScholarGoogle Scholar |

[15]  U. Alcolombri, S. Ben-Dor, E. Feldmesser, Y. Levin, D. S. Tawfik, A. Vardi, Identification of the algal dimethyl sulfide–releasing enzyme: a missing link in the marine sulfur cycle. Science 2015, 348, 1466.
Identification of the algal dimethyl sulfide–releasing enzyme: a missing link in the marine sulfur cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOitLvK&md5=a5d5e4d468d31249974d52a62e7b9e36CAS |

[16]  M. Vila-Costa, J. Rinta-Kanto, R. Poretsky, S. Sun, R. Kiene, M. Moran, Microbial controls on DMSP degradation and DMS formation in the Sargasso Sea. Biogeochemistry 2014, 120, 295.
Microbial controls on DMSP degradation and DMS formation in the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVCrt7w%3D&md5=18f354271ff99bc490de42346f55c93bCAS |

[17]  J. H. Ansede, D. C. Yoch, Comparison of selenium and sulfur volatilization by dimethylsulfoniopropionate lyase (DMSP) in two marine bacteria and estuarine sediments. FEMS Microbiol. Ecol. 1997, 23, 315.
Comparison of selenium and sulfur volatilization by dimethylsulfoniopropionate lyase (DMSP) in two marine bacteria and estuarine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVGjtbc%3D&md5=ece4f06bf924ed748012de7f2271de98CAS |

[18]  T. W.-M. Fan, A. N. Lane, D. Martens, R. M. Higashi, Synthesis and structure characterization of selenium metabolites. Analyst 1998, 123, 875.
Synthesis and structure characterization of selenium metabolites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislykuro%3D&md5=dd920a74af467936a43815120189a5f2CAS |

[19]  J. Stefels, M. Steinke, S. Turner, G. Malin, S. Belviso, Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 2007, 83, 245.
Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlakt7s%3D&md5=9175014be0df9c047069f284d3ef8ac5CAS |

[20]  B. A. Read, J. Kegel, M. J. Klute, A. Kuo, S. C. Lefebvre, F. Maumus, C. Mayer, J. Miller, A. Monier, A. Salamov, J. Young, M. Aguilar, J.-M. Claverie, S. Frickenhaus, K. Gonzalez, E. K. Herman, Y.-C. Lin, J. Napier, H. Ogata, A. F. Sarno, J. Shmutz, D. Schroeder, C. De Vargas, F. Verret, P. Von Dassow, K. Valentin, Y. Van De Peer, G. Wheeler, C. Emiliania Huxleyi Annotation, J. B. Dacks, C. F. Delwiche, S. T. Dyhrman, G. Glockner, U. John, T. Richards, A. Z. Worden, X. Zhang, I. V. Grigoriev, Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 2013, 499, 209.
Pan genome of the phytoplankton Emiliania underpins its global distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpt1Cru7c%3D&md5=74bd8e196aa6f9e7c5c99b5b5a94857dCAS |

[21]  K. Leblanc, J. Arístegui, L. Armand, P. Assmy, B. Beker, A. Bode, E. Breton, V. Cornet, J. Gibson, M. P. Gosselin, E. Kopczynska, H. Marshall, J. Peloquin, S. Piontkovski, A. J. Poulton, B. Quéguiner, R. Schiebel, R. Shipe, J. Stefels, M. A. Van Leeuwe, M. Varela, C. Widdicombe, M. Yallop, A global diatom database – abundance, biovolume and biomass in the world ocean. Earth Syst. Sci. Data 2012, 4, 149.
A global diatom database – abundance, biovolume and biomass in the world ocean.Crossref | GoogleScholarGoogle Scholar |

[22]  P. S. Liss, G. Malin, S. M. Turner, P. M. Holligan, Dimethyl sulphide and Phaeocystis: a review. J. Mar. Syst. 1994, 5, 41.
Dimethyl sulphide and Phaeocystis: a review.Crossref | GoogleScholarGoogle Scholar |

[23]  B. D. Wake, C. S. Hassler, A. R. Bowie, P. R. Haddad, E. C. V. Butler, Phytoplankton selenium requirements: the case for species isolated from temperate and polar regions of the Southern Hemisphere. J. Phycol. 2012, 48, 585.
Phytoplankton selenium requirements: the case for species isolated from temperate and polar regions of the Southern Hemisphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSrtbvF&md5=16123c672fcedbc092aa4beeb1493b03CAS |

[24]  R. R. L. Guillard, Culture of phytoplankton for feeding marine invertebrates, in Culture of Marine Invertebrate Animals, Vol. 2 (Eds W. L. Smith, M. H. Chanley) 1975 pp. 29–60 (Plenum Book Publishing Corporation: New York).

[25]  R. A. Andersen, J. A. Berges, P. J. Harrison, M. M. Watanabe, Recipes for freshwater and seawater media, in Algal Culturing Techniques (Ed. R. A. Andersen) 2005 pp. 429–538 (Academic Press).

[26]  B. Vriens, R. Behra, A. Voegelin, A. Zupanic, L. H. E. Winkel, Selenium uptake and methylation by the microalga Chlamydomonas reinhardtii. Environ. Sci. Technol. 2016, 50, 711.
| 1:CAS:528:DC%2BC2MXitVGiur%2FE&md5=27283baaf4f5a67f6612386a47bc098bCAS |

[27]  M. S. Datta, E. Sliwerska, J. Gore, M. F. Polz, O. X. Cordero, Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 2016, 7, 11965.
| 1:CAS:528:DC%2BC28XhtVGjurfF&md5=0ec36271d99eb100accec92e1f0f2e04CAS |

[28]  L. Winkel, J. Feldmann, A. A. Meharg, Quantitative and qualitative trapping of volatile methylated selenium species entrained through nitric acid. Environ. Sci. Technol. 2010, 44, 382.
Quantitative and qualitative trapping of volatile methylated selenium species entrained through nitric acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFShsrfO&md5=a3647b4f1190289182659a7ad4af1d2cCAS |

[29]  B. Vriens, A. A. Ammann, H. Hagendorfer, M. Lenz, M. Berg, L. H. E. Winkel, Quantification of methylated selenium, sulfur, and arsenic in the environment. PLoS One 2014, 9, e102906.
Quantification of methylated selenium, sulfur, and arsenic in the environment.Crossref | GoogleScholarGoogle Scholar |

[30]  B. Vriens, M. Mathis, L. H. E. Winkel, M. Berg, Quantification of volatile-alkylated selenium and sulfur in complex aqueous media using solid-phase microextraction. J. Chromatogr. A 2015, 1407, 11.
Quantification of volatile-alkylated selenium and sulfur in complex aqueous media using solid-phase microextraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKktL%2FI&md5=e79249954442ede1d7eaabadb70077dbCAS |

[31]  S. Kokarnig, A. Tsirigotaki, T. Wiesenhofer, V. Lackner, K. A. Francesconi, S. A. Pergantis, D. Kuehnelt, Concurrent quantitative HPLC–mass spectrometry profiling of small selenium species in human serum and urine after ingestion of selenium supplements. J. Trace Elem. Med. Biol. 2015, 29, 83.
Concurrent quantitative HPLC–mass spectrometry profiling of small selenium species in human serum and urine after ingestion of selenium supplements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1SjsL%2FJ&md5=19549a2ac3da3aa9fb2722760894bb83CAS |

[32]  L. Peperzak, F. Colijn, E. G. Vrieling, W. W. C. Gieskes, J. C. H. Peeters, Observations of flagellates in colonies of Phaeocystis globosa (Prymnesiophyceae); a hypothesis for their position in the life cycle. J. Plankton Res. 2000, 22, 2181.
Observations of flagellates in colonies of Phaeocystis globosa (Prymnesiophyceae); a hypothesis for their position in the life cycle.Crossref | GoogleScholarGoogle Scholar |

[33]  V. Rousseau, M.-J. Chrétiennot-Dinet, A. Jacobsen, P. Verity, S. Whipple, The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology. Biogeochemistry 2007, 83, 29.
The life cycle of Phaeocystis: state of knowledge and presumptive role in ecology.Crossref | GoogleScholarGoogle Scholar |

[34]  H. Araie, K. Sakamoto, I. Suzuki, Y. Shiraiwa, Characterization of the selenite uptake mechanism in the Coccolithophore Emiliania huxleyi (Haptophyta). Plant Cell Physiol. 2011, 52, 1204.
Characterization of the selenite uptake mechanism in the Coccolithophore Emiliania huxleyi (Haptophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslOisrc%3D&md5=3f8357c6899b434bf263866ba6ab4576CAS |

[35]  N. R. Bottino, C. H. Banks, K. J. Irgolic, P. Micks, A. E. Wheeler, R. A. Zingaro, Selenium containing amino acids and proteins in marine algae. Phytochemistry 1984, 23, 2445.
Selenium containing amino acids and proteins in marine algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitFSlsg%3D%3D&md5=88b0257fe3c9db9d95b7f2849138f4a9CAS |

[36]  K. Mitchell, P. R. D. Mason, P. Van Cappellen, T. M. Johnson, B. C. Gill, J. D. Owens, J. Diaz, E. D. Ingall, G.-J. Reichart, T. W. Lyons, Selenium as paleo-oceanographic proxy: a first assessment. Geochim. Cosmochim. Acta 2012, 89, 302.
Selenium as paleo-oceanographic proxy: a first assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1WqsL0%3D&md5=d5a788a84a30556f651d9e4643cddafdCAS |

[37]  Y. Zhang, V. N. Gladyshev, Trends in selenium utilization in marine microbial world revealed through the analysis of the Global Ocean Sampling (GOS) Project. PLoS Genet. 2008, 4, e1000095.
Trends in selenium utilization in marine microbial world revealed through the analysis of the Global Ocean Sampling (GOS) Project.Crossref | GoogleScholarGoogle Scholar |

[38]  D. Amouroux, C. Pécheyran, O. F. X. Donard, Formation of volatile selenium species in synthetic seawater under light and dark experimental conditions. Appl. Organomet. Chem. 2000, 14, 236.
Formation of volatile selenium species in synthetic seawater under light and dark experimental conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFegsL8%3D&md5=6ffd4df7d4bc8da8fe9473a83e8d93a0CAS |

[39]  X. Guo, R. E. Sturgeon, Z. Mester, G. J. Gardner, UV light-mediated alkylation of inorganic selenium. Appl. Organomet. Chem. 2003, 17, 575.
UV light-mediated alkylation of inorganic selenium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Sksrk%3D&md5=3d947efaccf1250fb76da82b02796a97CAS |

[40]  X. Guo, R. E. Sturgeon, Z. Mester, G. J. Gardner, Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids. Environ. Sci. Technol. 2003, 37, 5645.
Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVClsb4%3D&md5=d95bbdbdc3fbf0e5dfde30d28c3ab718CAS |

[41]  S. B. Baines, N. S. Fisher, M. A. Doblin, G. A. Cutter, L. S. Cutter, B. Cole, Light dependence of selenium uptake by phytoplankton and implications for predicting selenium incorporation into food webs. Limnol. Oceanogr. 2004, 49, 566.
Light dependence of selenium uptake by phytoplankton and implications for predicting selenium incorporation into food webs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFWgu7c%3D&md5=6b4cdb19d3d298bfdf1123b41550188dCAS |

[42]  A. S. Bahrou, P. R. L. Ollivier, T. E. Hanson, E. Tessier, D. Amouroux, T. M. Church, Volatile dimethyl polonium produced by aerobic marine microorganisms. Environ. Sci. Technol. 2012, 46, 11402.
Volatile dimethyl polonium produced by aerobic marine microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kjsr3L&md5=51c344199271d4ea152a32b1b8e6aab2CAS |

[43]  E. G. Duncan, W. A. Maher, S. D. Foster, K. M. Mikac, F. Krikowa, The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta. J. Appl. Phycol. 2014, 26, 2129.
The influence of bacteria on the arsenic species produced by laboratory cultures of the marine phytoplankton Dunaliella tertiolecta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVentL%2FF&md5=4b1dbda14df9d947fb0b980cb7c1fa3dCAS |

[44]  E. G. Duncan, W. A. Maher, S. D. Foster, K. M. Mikac, F. Krikowa, A. Florance, Arsenoriboside degradation in marine systems: the use of bacteria culture incubation experiments as model systems. Chemosphere 2014, 95, 635.
Arsenoriboside degradation in marine systems: the use of bacteria culture incubation experiments as model systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWjtbrP&md5=a4b6a706b3b688d91b129d80b99cba1fCAS |

[45]  J. L. Levy, J. L. Stauber, S. A. Wakelin, D. F. Jolley, The effect of field-collected biofilms on the toxicity of copper to a marine microalga (Tetraselmis sp.) in laboratory bioassays. Mar. Freshwater Res. 2011, 62, 1362.
The effect of field-collected biofilms on the toxicity of copper to a marine microalga (Tetraselmis sp.) in laboratory bioassays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCit7jO&md5=72258902325be0e66a8ecae33c3b51eeCAS |