Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

A BUKI (Building up Knowledge Initiative) focussed on antimony’s environmental chemistry

Montserrat Filella
+ Author Affiliations
- Author Affiliations

A Institute F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1211 Geneva 4, Switzerland.

B SCHEMA, Rue Principale 92, L-6990 Rameldange, Luxembourg.

C Corresponding author. Email: montserrat.filella@unige.ch

Environmental Chemistry 13(6) 971-978 https://doi.org/10.1071/EN16078
Submitted: 8 April 2016  Accepted: 25 July 2016   Published: 24 August 2016

Environmental context. Scientific knowledge is continuously built up based on research results, and relies on their efficient and accurate dissemination. Using antimony as an example, a system is proposed that combines ease of access with focussed reviews while keeping track of all published work. This system, termed BUKI (Building Up Knowledge Initiative) is a collaborative approach based on the combination of a web-based platform and the elaboration of systematic reviews.

Abstract. The increasing difficulties experienced by the scientific community in efficiently constructing knowledge from the flood of data being continuously produced are discussed and a concrete solution – a BUKI (Building Up Knowledge Initiative) – proposed for research on the environmental chemistry of antimony. A BUKI is a collaborative approach based on the combination of a web-based platform and the elaboration of systematic reviews. The antimony BUKI described here aims to improve our knowledge of antimony in environmental systems but also to stir up discussion about how research works nowadays and to provide a model for the development of other BUKIs.


References

[1]  T. S. Kuhn, The Structure of Scientific Revolutions, 2nd edition 1970 (University of Chicago Press: Chicago).

[2]  R. K. Merton, The Sociology of Science: Theoretical and Empirical Investigations 1973 (University of Chicago Press: Chicago).

[3]  R. Van Noorden, Online collaboration: Scientists and the social network. Nature 2014, 512, 126.
Online collaboration: Scientists and the social network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGntb7I&md5=e6527b108def300ac4930b65ac91df95CAS | 25119221PubMed |

[4]  K. G. Shojania, M. Sampson, M. T. Ansari, J. Ji, S. Doucette, D. Moher, How quickly do systematic reviews go out of date? A survival analysis. Ann. Intern. Med. 2007, 147, 224.
How quickly do systematic reviews go out of date? A survival analysis.Crossref | GoogleScholarGoogle Scholar | 17638714PubMed |

[5]  Please see https://scholarlyoa.com/ [accessed 31 March 2016].

[6]  Please see http://www.nature.com/nature/authors/get_published/ [accessed 31 March 2016].

[7]  D. Davies, Citation idiosyncracies. Nature 1970, 228, 1356.
Citation idiosyncracies.Crossref | GoogleScholarGoogle Scholar | 4922692PubMed |

[8]  J. R. Cole, S. Cole, The Ortega hypothesis. Science 1972, 178, 368.
The Ortega hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvktFyltQ%3D%3D&md5=a36a77eb7d2f7b4ae213d4c9d21e3cd4CAS | 17815351PubMed |

[9]  J. P. A. Ioannidis, Concentration of the most-cited papers in the scientific literature: Analysis of journal ecosystems. PLoS One 2006, 1, e5.
Concentration of the most-cited papers in the scientific literature: Analysis of journal ecosystems.Crossref | GoogleScholarGoogle Scholar |

[10]  S. A. Greenberg, How citation distortions create unfounded authority: analysis of a citation network. BMJ 2009, 339, b2680.
How citation distortions create unfounded authority: analysis of a citation network.Crossref | GoogleScholarGoogle Scholar | 19622839PubMed |

[11]  M. Filella, P. A. Williams, N. Belzile, Antimony in the environment: knowns and unknowns. Environ. Chem. 2009, 6, 95.
Antimony in the environment: knowns and unknowns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtr4%3D&md5=9672daa861fdfc2dc40714a64991b65dCAS |

[12]  J. Klein, S. Dorge, G. Trouvé, D. Venditti, S. Durécu, Behaviour of antimony during thermal treatment of Sb-rich halogenated waste. J. Hazard. Mater. 2009, 166, 585.
Behaviour of antimony during thermal treatment of Sb-rich halogenated waste.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFKju7w%3D&md5=281ffa1d218058743f6cf69c061191b8CAS | 19167161PubMed |

[13]  M. Tschan, B. H. Robinson, R. Schulin, Antimony in the soil–plant system – a review. Environ. Chem. 2009, 6, 106.
Antimony in the soil–plant system – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVyqtr8%3D&md5=c0d2f756d55d5036686cbfcb48666e72CAS |

[14]  M. Filella, Alkylantimony derivatives in the environment. Met. Ions Life Sci. 2010, 7, 267.
Alkylantimony derivatives in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVegsr8%3D&md5=dae57a866f01d36b9ecd70bdaeaa1ec3CAS | 20877810PubMed |

[15]  C. Reimann, J. Matschullat, M. Birke, R. Salminen, Antimony in the environment: Lessons from geochemical mapping. Appl. Geochem. 2010, 25, 175.
Antimony in the environment: Lessons from geochemical mapping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVegtb8%3D&md5=75f9e79cddbac9808d10d95d971fbcdeCAS |

[16]  S. C. Wilson, P. V. Lockwood, P. M. Ashley, M. Tighe, The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environ. Pollut. 2010, 158, 1169.
The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Knt7g%3D&md5=36be442dc76e66c8e8c11cfb30f90365CAS | 19914753PubMed |

[17]  N. Belzile, Y.-W. Chen, M. Filella, Human exposure to antimony I. Sources and intake. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1309.
Human exposure to antimony I. Sources and intake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlGntLw%3D&md5=4ba4142edd889ea42a6ed604c3d8918aCAS |

[18]  M. Filella, Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of data obtained in bulk samples. Earth Sci. Rev. 2011, 107, 325.
Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of data obtained in bulk samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslalsLo%3D&md5=3990716aab1c8f541a264ef5f6817bdeCAS |

[19]  M. Filella, N. Belzile, Y.-W. Chen, Human exposure to antimony. II. Contents in some human tissues often used in biomonitoring (hair, nails, teeth). Crit. Rev. Environ. Sci. Technol. 2012, 42, 1058.
Human exposure to antimony. II. Contents in some human tissues often used in biomonitoring (hair, nails, teeth).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVKitb0%3D&md5=9ee84c14cbe77b8837ca6d767b3999f3CAS |

[20]  M. Filella, P. A. Williams, Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of binding data for homologous compounds. Chem. Erde 2012, 72, 49.
Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of binding data for homologous compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktlGrsr8%3D&md5=9ec0365f216bee5246182a6194dea377CAS |

[21]  M. C. He, X. Q. Wang, F. C. Wu, Z. Y. Fu, Antimony pollution in China. Sci. Total Environ. 2012, 421–422, 41.
Antimony pollution in China.Crossref | GoogleScholarGoogle Scholar |

[22]  R. Feng, C. Wei, S. Tu, Y. Ding, R. Wang, J. Guo, The uptake and detoxification of antimony by plants: A review. Environ. Exp. Bot. 2013, 96, 28.
The uptake and detoxification of antimony by plants: A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Ort7fF&md5=5fae5461c76048afe925623c30731635CAS |

[23]  M. Filella, N. Belzile, Y.-W. Chen, Human exposure to antimony. III. Contents in some human excreted biofluids (urine, milk, saliva). Crit. Rev. Environ. Sci. Technol. 2013, 43, 204.
Human exposure to antimony. III. Contents in some human excreted biofluids (urine, milk, saliva).Crossref | GoogleScholarGoogle Scholar |

[24]  M. Filella, N. Belzile, Y.-W. Chen, Human exposure to antimony. IV. Contents in blood. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2071.
Human exposure to antimony. IV. Contents in blood.Crossref | GoogleScholarGoogle Scholar |

[25]  S. L. C. Ferreira, W. N. L. dos Santos, I. F. dos Santos, M. M. S. Junior, L. O. B. Silva, U. A. Barbosa, F. A. de Santana, A. F. de S. Queiroz, Strategies of sample preparation for speciation analysis of inorganic antimony using hydride generation atomic spectrometry. Microchem. J. 2014, 114, 22.
A. F. de S. Queiroz, Strategies of sample preparation for speciation analysis of inorganic antimony using hydride generation atomic spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVertrY%3D&md5=dbc38c32bba744b08dafa24f8ef82f5dCAS |

[26]  Y. M. Nakamaru, J. Altansuvd, Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere 2014, 111, 366.
Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWgtLfI&md5=e4259145a4fb335c80c475c8f37d1143CAS | 24997941PubMed |

[27]  U. Schwarz-Schampera, Antimony, in Critical Metals Handbook (Ed. G. Gunn) 2014, pp. 70–98 (British Geological Survey, Wiley).

[28]  H. Mubarak, L.-Y. Chai, N. Mirza, Z.-H. Yang, A. Pervez, M. Tariq, S. Shaheen, Q. Mahmood, Antimony (Sb) – pollution and removal techniques – critical assessment of technologies. Toxicol. Environ. Chem. 2015, 97, 1296.
Antimony (Sb) – pollution and removal techniques – critical assessment of technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslaksbbJ&md5=6e53aa6f824dca61b497c3a322c2c978CAS |

[29]  A. Pierart, M. Shahid, N. Séjalon-Delmas, C. Dumat, Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater. 2015, 289, 219.
Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlSguro%3D&md5=1c69a998609e11452057ebc2e097c2e7CAS | 25726907PubMed |

[30]  G. Ungureanu, S. Santos, R. Boaventura, C. Botelho, Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manage. 2015, 151, 326.
Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit1Sgsg%3D%3D&md5=7c3c78087d55113d40e5cdab939496a0CAS | 25585146PubMed |

[31]  M. Krachler, H. Emons, J. Zheng, Speciation of antimony for the 21st century: promises and pitfalls. Trends Analyt. Chem. 2001, 20, 79.
Speciation of antimony for the 21st century: promises and pitfalls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXps1SmsA%3D%3D&md5=c86d4434a5f1dd5c0f3be412c9fff9c4CAS |

[32]  P. Smichowski, Antimony in the environment as a global pollutant: A review on analytical methodologies for its determination in atmospheric aerosols. Talanta 2008, 75, 2.
Antimony in the environment as a global pollutant: A review on analytical methodologies for its determination in atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislWitL8%3D&md5=72ad563095eef73a723fc479ed275672CAS | 18371839PubMed |

[33]  M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters. I. Occurrence. Earth Sci. Rev. 2002, 57, 125.
Antimony in the environment: a review focused on natural waters. I. Occurrence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Wgsr4%3D&md5=f037ff9f903eff7a9929738ebdee35beCAS |

[34]  R. K. Merton, The Matthew effect in science. The reward and communication systems of science are considered. Science 1968, 159, 56.
The Matthew effect in science. The reward and communication systems of science are considered.Crossref | GoogleScholarGoogle Scholar | 17737466PubMed |

[35]  G. N. Gilbert, Referencing as persuasion. Soc. Stud. Sci. 1977, 7, 113.
Referencing as persuasion.Crossref | GoogleScholarGoogle Scholar |

[36]  M. Petticrew, Systematic reviews from astronomy to zoology: myths and misconceptions. BMJ 2001, 322, 98.
Systematic reviews from astronomy to zoology: myths and misconceptions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3itl2itQ%3D%3D&md5=eb46860d2de42aa6a8516f879e2d18edCAS | 11154628PubMed |

[37]  T. Greenhalgh, How to Read a Paper. The Basics of Evidence-based Medicine. Third edition 2006 (Blackwell: Oxford).

[38]  M. Filella, P. M. May, Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters. Geochim. Cosmochim. Acta 2003, 67, 4013.
Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Slu74%3D&md5=7ac7ab4a1070e1a189518eef324d1a05CAS |

[39]  M. Filella, W. Hummel, Trace element complexation by humic substances: issues related to quality assurance. Accredit. Qual. Assur. 2011, 16, 215.
Trace element complexation by humic substances: issues related to quality assurance.Crossref | GoogleScholarGoogle Scholar |

[40]  Z. Brożek-Mucha, Chemical and morphological study of gunshot residue persisting on the shooter by means of scanning electron microscopy and energy dispersive X-ray spectrometry. Microsc. Microanal. 2011, 17, 972.
Chemical and morphological study of gunshot residue persisting on the shooter by means of scanning electron microscopy and energy dispersive X-ray spectrometry.Crossref | GoogleScholarGoogle Scholar | 22051052PubMed |

[41]  Y. B. Cihan, S. Sözen, S. Ö. Yıldırım, Trace elements and heavy metals in hair of stage III breast cancer patients. Biol. Trace Elem. Res. 2011, 144, 360.
Trace elements and heavy metals in hair of stage III breast cancer patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1elsrzK&md5=a35f3a623de3d87644df2384210d03dcCAS |

[42]  N. S. Gadhari, B. J. Sanghavi, A. K. Srivastava, Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice dusk. Anal. Chim. Acta 2011, 703, 31.
Potentiometric stripping analysis of antimony based on carbon paste electrode modified with hexathia crown ether and rice dusk.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVaksr3L&md5=1224088007e4247462b378b28efd7c5dCAS | 21843672PubMed |

[43]  U. Kumtabtim, A. Matusch, S. Ulhoa Dani, A. Siripinyanond, J. S. Becker, Biomonitoring for arsenic, toxic and essential metals in single hair strands by laser ablation inductively coupled plasma mass spectrometry. Int. J. Mass Spectrom. 2011, 307, 185.
Biomonitoring for arsenic, toxic and essential metals in single hair strands by laser ablation inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WktLvL&md5=9e80a7a384df6b0e7f88e3dd2cf30467CAS |

[44]  B. Liu, F. Wu, X. Li, Z. Fu, Q. Deng, C. Mo, J. Zhu, Y. Zhu, Arsenic, antimony and bismuth in human hair from potentially exposed individuals in the vicinity of antimony mines in Southwest China. Microchem. J. 2011, 97, 20.
Arsenic, antimony and bismuth in human hair from potentially exposed individuals in the vicinity of antimony mines in Southwest China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2rsr%2FF&md5=62295cd327857e944fdc759834d8e51dCAS |

[45]  F. Wu, Z. Fu, B. Liu, C. Mo, B. Chen, W. Corns, H. Liao, Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area. Sci. Total Environ. 2011, 409, 3344.
Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlGiurg%3D&md5=28b8a61af34907ef6cf6c668b9ee60f9CAS | 21684578PubMed |

[46]  E. Blaurock-Busch, O. R. Amin, H. H. Dessoki, T. Rabah, Toxic metals and essential elements in hair and severity of symptoms among children with autism. Maedica – a Journal of Clinical Medicine 2012, 7, 38.
| 23118818PubMed |

[47]  G. Dongarrà, D. Varrica, E. Tamburo, D. D’Andrea, Trace elements in scalp hair of children living in differing environmental contexts in Sicily (Italy). Environ. Toxicol. Pharmacol. 2012, 34, 160.
Trace elements in scalp hair of children living in differing environmental contexts in Sicily (Italy).Crossref | GoogleScholarGoogle Scholar | 22522426PubMed |

[48]  M. A. Serdar, B. S. Akin, C. Razi, O. Akin, S. Tokgoz, L. Kenar, O. Aykut, The correlation between smoking status of family members and concentrations of toxic trace elements in the hair of children. Biol. Trace Elem. Res. 2012, 148, 11.
The correlation between smoking status of family members and concentrations of toxic trace elements in the hair of children.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlSmtbo%3D&md5=cd75d963d9a7609bb5d7babc33a17bd9CAS | 22322881PubMed |

[49]  J. M. Khudzari, H. Wagiran, I. Hossain, N. Ibrahim, Screening heavy metals levels in hair of sanitation workers by X-ray fluorescence analysis. J. Environ. Radioact. 2013, 115, 1.
Screening heavy metals levels in hair of sanitation workers by X-ray fluorescence analysis.Crossref | GoogleScholarGoogle Scholar |

[50]  H. Fazelirad, M. A. Taher, Preconcentration of ultra-trace amounts of iron and antimony using ion pair solid phase extraction with modified multi-walled carbon nanotubes. Microchim. Acta 2014, 181, 655.
Preconcentration of ultra-trace amounts of iron and antimony using ion pair solid phase extraction with modified multi-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1eru7g%3D&md5=08f58cd290698d400704a48bcb2653b8CAS |

[51]  J. Li, D. Cen, D. Huang, X. Li, J. Xu, S. Fu, R. Cai, X. Wu, M. Tang, Y. Sun, J. Zhang, J. Zheng, Detection and analysis of 12 heavy metals in blood and hair sample from a general population of Pearl River Delta area. Cell Biochem. Biophys. 2014, 70, 1663.
Detection and analysis of 12 heavy metals in blood and hair sample from a general population of Pearl River Delta area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFehs7bK&md5=7dd6180ceea89dd0b90b2516274e7364CAS | 25009099PubMed |

[52]  Y. Huang, W. Ni, Y. Chen, X. Wang, J. Zhang, K. Wu, Levels and risk factors of antimony contamination in human hair from an electronic waste recycling area, Guiyu, China. Environ. Sci. Pollut. Res. Int. 2015, 22, 7112.
Levels and risk factors of antimony contamination in human hair from an electronic waste recycling area, Guiyu, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVyjs7%2FN&md5=d0607ee0637e05bcebc877330077a77bCAS | 25501644PubMed |

[53]  F. Bullough, D. J. Weiss, W. E. Dubbin, B. J. Coles, J. Barrott, A. K. SenGupta, Evidence of competitive adsorption of Sb(III) and As(III) on activated alumina. Ind. Eng. Chem. Res. 2010, 49, 2521.
Evidence of competitive adsorption of Sb(III) and As(III) on activated alumina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslShtrg%3D&md5=18e2941d27ea7e39c3a3286587cec3dbCAS |

[54]  S. Rakshit, D. Sarkar, P. Punamiya, R. Datta, Antimony sorption at gibbsite–water interface. Chemosphere 2011, 84, 480.
Antimony sorption at gibbsite–water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslyqu7k%3D&md5=329a8ffe20c635f58d254f971612170cCAS | 21481912PubMed |

[55]  J.-X. Fan, Y.-J. Wang, X.-D. Cui, D.-M. Zhou, Sorption isotherms and kinetics of Sb(V) on several Chinese soils with different physicochemical properties. J. Soils Sediments 2013, 13, 344.
Sorption isotherms and kinetics of Sb(V) on several Chinese soils with different physicochemical properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlajt7s%3D&md5=6b929dc98db0b8cd7c88f269e576d0b8CAS |

[56]  V. K. Mittal, S. Bera, S. V. Narasimhan, S. Velmurugan, Adsorption behavior of antimony(III) oxyanions on magnetite surface in aqueous organic acid environment. Appl. Surf. Sci. 2013, 266, 272.
Adsorption behavior of antimony(III) oxyanions on magnetite surface in aqueous organic acid environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFShsQ%3D%3D&md5=9311ef072a9db1873e34b301b1bebad5CAS |

[57]  M. Vithanage, A. U. Rajapaksha, X. Dou, N. S. Bolan, J. E. Yang, Y. S. Ok, Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils. J. Colloid Interface Sci. 2013, 406, 217.
Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVCjtLc%3D&md5=92711a0becf27063e898acf4e88bde97CAS | 23791229PubMed |

[58]  J. Xi, M. He, K. Wang, G. Zhang, Adsorption of antimony(III) on goethite in the presence of competitive anions. J. Geochem. Explor. 2013, 132, 201.
Adsorption of antimony(III) on goethite in the presence of competitive anions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOhsr7O&md5=281e2ebfc31d3e952e114439c3baa057CAS |

[59]  W. Xu, H. Wang, R. Liu, X. Zhao, J. Qu, The mechanism of Sb(III) removal and its reactions on the surfaces of Fe–Mn binary oxide. J. Colloid Interface Sci. 2011, 363, 320.
The mechanism of Sb(III) removal and its reactions on the surfaces of Fe–Mn binary oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVygu7vJ&md5=115d57e7672fc63286695b903ec3c908CAS | 21840528PubMed |

[60]  X. Guo, Z. Wu, M. He, X. Meng, X. Jin, N. Qiu, J. Zhang, Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure. J. Hazard. Mater. 2014, 276, 339.
Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOitLbI&md5=d6101a0a11e9e1ef2e865c9deed50d42CAS | 24910911PubMed |

[61]  C. Shan, Z. Ma, M. Tong, Efficient removal of trace antimony(III) thrugh adsorption by hematite modified magnetic nanoparticles. J. Hazard. Mater. 2014, 268, 229.
Efficient removal of trace antimony(III) thrugh adsorption by hematite modified magnetic nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivVCgsrs%3D&md5=5a85f92735f6b670f54fa0db593214caCAS | 24509094PubMed |

[62]  M. E. Essington, M. A. Stewart, Influence of temperature and pH on antimonate adsorption by gibbsite, goethite, and kaolinite. Soil Sci. 2015, 180, 54.
Influence of temperature and pH on antimonate adsorption by gibbsite, goethite, and kaolinite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtl2qurrP&md5=2b1e04e578ad41af8513485c78c190daCAS |

[63]  Z. He, R. Liu, H. Liu, J. Qu, Adsorption of Sb(III) and Sb(V) on freshly prepared ferric hydroxide (FeOxHy). Environ. Eng. Sci. 2015, 32, 95.
Adsorption of Sb(III) and Sb(V) on freshly prepared ferric hydroxide (FeOxHy).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXis1Kmurs%3D&md5=e12a0fccdaa69a0cb5851bbb32972160CAS | 25741175PubMed |

[64]  M. Filella, Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of binding data for homologous compounds, in Antimony 2011. 2nd International Workshop on Antimony in the Environment, Jena, Germany, 21–24 August 2011.

[65]  R. Bentley, T. G. Chasteen, Microbial methylation of metalloids: Arsenic, antimony, and bismuth. Microbiol. Mol. Biol. Rev. 2002, 66, 250.
Microbial methylation of metalloids: Arsenic, antimony, and bismuth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFSltrs%3D&md5=0a8e66bce89038775c4595d2519fcc25CAS | 12040126PubMed |

[66]  J. S. Thayer, Biological methylation of less-studied elements. Appl. Organomet. Chem. 2002, 16, 677.
Biological methylation of less-studied elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpslWmtrw%3D&md5=b08b3de7fe8ab5af90a809ae24b42b9bCAS |

[67]  P. Andrewes, W. R. Cullen, Organoantimony compounds in the environment, in Organometallic Compounds in the Environment, 2nd edn (Ed. P. Craig) 2003, pp. 277–303 (Wiley: Chichester).

[68]  E. Dopp, L. M. Hartmann, A.-M. Florea, A. W. Rettenmeier, A. V. Hirner, Environmental distribution, analysis, and toxicity of organometal(loid) compounds. Crit. Rev. Toxicol. 2004, 34, 301.
Environmental distribution, analysis, and toxicity of organometal(loid) compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Cnu7o%3D&md5=42ac5993eeef0b020afa686d4f95ff37CAS | 15239389PubMed |

[69]  M. Filella, N. Belzile, M.-C. Lett, Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions. Earth Sci. Rev. 2007, 80, 195.
Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFGhug%3D%3D&md5=9f7ef9959129de7923c4c83b06c5fe1eCAS |

[70]  K. Müller, B. Daus, J. Mattusch, H.-J. Stärk, R. Wennrich, Simultaneous determination of inorganic and organic antimony species by using anion exchange phases for HPLC–ICP-MS and their application to plant extracts of Pteris vittata. Talanta 2009, 78, 820.
Simultaneous determination of inorganic and organic antimony species by using anion exchange phases for HPLC–ICP-MS and their application to plant extracts of Pteris vittata.Crossref | GoogleScholarGoogle Scholar | 19269435PubMed |

[71]  R. A. Diaz-Bone, T. Van de Wiele, Biotransformation of metal(loid)s by intestinal microorganisms. Pure Appl. Chem. 2010, 82, 409.
Biotransformation of metal(loid)s by intestinal microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVShsLc%3D&md5=58d4dd3fbb28c5f7214a235ee68d9b3eCAS |

[72]  L. Duester, H. G. van der Geest, S. Moelleken, A. V. Hirner, K. Kueppers, Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum. Microchem. J. 2011, 97, 30.
Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2rsrzN&md5=b875f4aaf794805c0875ad16fc675250CAS |

[73]  E. Hernández-Nataren, A. Sahuquillo, R. Rubio, J. F. López-Sánchez, Solid-phase extraction (SPE) assays to ascertain the mechanisms of retention of antimony species in several stationary phases. Microchem. J. 2011, 97, 74.
Solid-phase extraction (SPE) assays to ascertain the mechanisms of retention of antimony species in several stationary phases.Crossref | GoogleScholarGoogle Scholar |

[74]  W. Quiroz, H. Arias, M. Bravo, M. Pinto, M. G. Lobos, M. Cortés, Development of analytical method for determination of Sb(V), Sb(III) and TMSb(V) in occupationally exposed human urine samples by HPLC–HG-AFS. Microchem. J. 2011, 97, 78.
Development of analytical method for determination of Sb(V), Sb(III) and TMSb(V) in occupationally exposed human urine samples by HPLC–HG-AFS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2rsr3M&md5=bcaf4e300dd5f6dd9df0fe635a69d171CAS |

[75]  Z. Ge, C. Wei, Simultaneous analysis of SbIII, SbV and TMSb by high performance liquid chromatography–inductively coupled plasma–mass spectrometry detection: Application to antimony speciation in soil samples. J. Chromatogr. Sci. 2013, 51, 391.
Simultaneous analysis of SbIII, SbV and TMSb by high performance liquid chromatography–inductively coupled plasma–mass spectrometry detection: Application to antimony speciation in soil samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVGksrk%3D&md5=e6498b43ca67c69e32f771327b23f87aCAS | 23019249PubMed |

[76]  H. Yang, M. He, Adsorption of methylantimony and methylarsenic on soils, sediments, and mine tailings from antimony mine area. Microchem. J. 2015, 123, 158.
Adsorption of methylantimony and methylarsenic on soils, sediments, and mine tailings from antimony mine area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOls73O&md5=b4c7a359702577c5dc6989e5b1a9c4b1CAS |

[77]  A. J. Roper, P. A. Williams, M. Filella, Secondary antimony minerals: phases that control the dispersion of antimony in the supergene zone. Chem. Erde 2012, 72, 9.
Secondary antimony minerals: phases that control the dispersion of antimony in the supergene zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVKisb0%3D&md5=a4572a7f9609af809c4dc53d68d6bac0CAS |

[78]  B. Lalinská-Voleková, J. Majzlan, T. Klimko, M. Chovan Kučerová, J. Michňová, R. Hovorič, Mineralogy of weathering products of Fe–As–Sb mine wastes and soils at several Sb deposits in Slovakia. Can. Mineral. 2012, 50, 481.
Mineralogy of weathering products of Fe–As–Sb mine wastes and soils at several Sb deposits in Slovakia.Crossref | GoogleScholarGoogle Scholar |

[79]  P. Leverett, J. K. Reynolds, A. J. Roper, P. A. Williams, Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment. Mineral. Mag. 2012, 76, 891.
Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GhsbrP&md5=5f6f39b64aa49226b102e7b2fbe5f1f8CAS |

[80]  A. J. Roper, P. Leverett, T. D. Murphy, P. A. Williams, The stability of onoratoite, Sb8O11Cl2, in the supergene environment. Mineral. Mag. 2014, 78, 1671.
The stability of onoratoite, Sb8O11Cl2, in the supergene environment.Crossref | GoogleScholarGoogle Scholar |

[81]  A. J. Roper, P. Leverett, T. D. Murphy, P. A. Williams, Stabilities of bystromite, MgSb2O6, ordonezite, ZnSb2O6 and rosiaite, PbSb2O6, and their possible roles in limiting antimony mobility in the supergene zone. Mineral. Mag. 2015a, 79, 537.
Stabilities of bystromite, MgSb2O6, ordonezite, ZnSb2O6 and rosiaite, PbSb2O6, and their possible roles in limiting antimony mobility in the supergene zone.Crossref | GoogleScholarGoogle Scholar |

[82]  A. J. Roper, P. Leverett, T. D. Murphy, P. A. Williams, D. E. Hibbs, Klebelsbergite, Sb4O4SO4(OH) (2): Stability relationships, formation in Nature, and refinement of its structure. Am. Mineral. 2015b, 100, 602.
Klebelsbergite, Sb4O4SO4(OH) (2): Stability relationships, formation in Nature, and refinement of its structure.Crossref | GoogleScholarGoogle Scholar |

[83]  A. G. Christy, D. Atencio, Clarification of status of species in the pyrochlore supergroup. Mineral. Mag. 2013, 77, 13.
Clarification of status of species in the pyrochlore supergroup.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlyksrs%3D&md5=476c388a0a0f6f506a3281b9c6c1ab53CAS |

[84]  S. J. Mills, B. Etschmann, A. R. Kampf, G. Poirier, M. Newville, Sb5+ and Sb3+ substitution in segnitite: A new sink for As and Sb in the environment and implications for acid mine drainage. Am. Mineral. 2014, 99, 1355.
Sb5+ and Sb3+ substitution in segnitite: A new sink for As and Sb in the environment and implications for acid mine drainage.Crossref | GoogleScholarGoogle Scholar |

[85]  D. Kossoff, M. D. Welch, K. A. Hudson-Edwards, Scorodite precipitation in the presence of antimony. Chem. Geol. 2015, 406, 1.
Scorodite precipitation in the presence of antimony.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXns1KhsL0%3D&md5=3778538430a0c42e0f643784cebac30fCAS |

[86]  C. Reimann, P. de Caritat, Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ. Sci. Technol. 2000, 34, 5084.
Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvFartb0%3D&md5=2d13c34db150775d253b1353836908aaCAS |

[87]  C. Reimann, P. de Caritat, Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci. Total Environ. 2005, 337, 91.
Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFOm&md5=51177fdd9dc57a463c5a7f53978b7671CAS | 15626382PubMed |

[88]  Z. Hu, S. Gao, Upper crustal abundances of trace elements: A revision and update. Chem. Geol. 2008, 253, 205.
Upper crustal abundances of trace elements: A revision and update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFyjs78%3D&md5=8c427cbda007aae709b4518ede2a6a61CAS |

[89]  S. R. Taylor, S. M. McLennan, The Continental Crust: Its Composition and Evolution 1985 (Blackwell: Oxford).

[90]  S. R. Taylor, S. M. McLennan, The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241.
The geochemical evolution of the continental crust.Crossref | GoogleScholarGoogle Scholar |

[91]  K. W. W. Sims, H. E. Newsom, E. S. Gladney, Chemical fractionation during formation of the Earth’s core and continental crust: clues from As, Sb, W, and Mo, in Origin of the Earth (Eds H. F. Newsom, J. H. Jones, J.H., Newson) 1990, pp. 291–317 (Oxford University Press: Oxford).

[92]  K. H. Wedepohl, The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217.
The composition of the continental crust.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVGlsrw%3D&md5=4415770564beb81253f397eee5a0923dCAS |

[93]  H. Onishi, E. B. Sandell, Notes on the geochemistry of antimony. Geochim. Cosmochim. Acta 1955, 8, 213.
Notes on the geochemistry of antimony.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XitlGmuw%3D%3D&md5=4343e49cb6eace466c88d6f9b655ffbaCAS |

[94]  M. Filella, N. Belzile, Y.-W. Chen, Antimony in the environment: a review focused on natural waters. II. Relevant solution chemistry. Earth Sci. Rev. 2002, 59, 265.
Antimony in the environment: a review focused on natural waters. II. Relevant solution chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslCmsrw%3D&md5=b0d697e159db1dfb58fec29b9518933aCAS |

[95]  S. Gao, T. C. Luo, B. R. Zhang, H. F. Zhang, Y. W. Han, Z. D. Zhao, Y. K. Hu, Chemical composition of the continental crust as revealed by studies in East China. Geochim. Cosmochim. Acta 1998, 62, 1959.
Chemical composition of the continental crust as revealed by studies in East China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFCrt7k%3D&md5=caa617db7d6e8ffaba3a9194c630948eCAS |

[96]  R. Rudnick, S. Gao, Composition of the continental crust, in The Crust (Ed. R. L. Rudnick) in Treatise on Geochemistry, vol. 3 (Eds H. D. Holland, K. K. Turekian) 2003, pp. 1–64 (Elsevier–Pergamon: Oxford).

[97]  R. Rudnick, S. Gao, Composition of the continental crust, in Treatise on Geochemistry, vol. 4 (Eds H. D. Holland, K. K. Turekian) 2014, pp. 1–51.

[98]  M. Filella, Food for thought: A critical overview of current practical and conceptual challenges in trace element analysis in natural waters. Water 2013, 5, 1152.
Food for thought: A critical overview of current practical and conceptual challenges in trace element analysis in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GksbbM&md5=40eb35fde3ee6c939bab459ff4a54b95CAS |

[99]  G. A. Cutter, L. S. Cutter, Biogeochemistry of arsenic and antimony in the North Pacific Ocean. Geochemistry Geophysics Geosystems G3 2006, 7, Q05M08.
Biogeochemistry of arsenic and antimony in the North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

[100]  O. Domínguez-Renedo, M. J. Gómez González, M. J. Arcos-Martínez, Determination of Antimony (III) in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode. Sensors 2009, 9, 219.
Determination of Antimony (III) in Real Samples by Anodic Stripping Voltammetry Using a Mercury Film Screen-Printed Electrode.Crossref | GoogleScholarGoogle Scholar | 22389596PubMed |

[101]  M. S. El-Shahawi, A. S. Bashammakh, A. A. Al-Sibaai, S. O. Bahaffi, E. H. Al-Gohani, Chemical speciation of antimony(III and V) in water by adsorptive cathodic stripping voltammetry using the 4-(2-thiazolylazo) – resorcinol. Electroanalysis 2011, 23, 747.
Chemical speciation of antimony(III and V) in water by adsorptive cathodic stripping voltammetry using the 4-(2-thiazolylazo) – resorcinol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFCmur0%3D&md5=8206ce68ec36660a8fa9e3bacc513c55CAS |

[102]  L. Kozak, P. Niedzielski, The simultaneous arsenic, antimony, and selenium determination in water samples by batch hydride generation atomic absorption spectrometry. Anal. Lett. 2011, 44, 2312.
The simultaneous arsenic, antimony, and selenium determination in water samples by batch hydride generation atomic absorption spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGls7jO&md5=abf68c7c535234e07638d8a8a162ef71CAS |

[103]  P. Zong, J. Long, Y. Nagaosa, Determination of total antimony(III,V) by square-wave anodic stripping voltammetry with in situ plated bismuth-film electrode. Int. J. Environ. Anal. Chem. 2011, 91, 421.
Determination of total antimony(III,V) by square-wave anodic stripping voltammetry with in situ plated bismuth-film electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12jsrs%3D&md5=b00ebb1fc9b5d57600e47dba02f165dcCAS |

[104]  F. Shakerian, S. Dadfarnia, A. M. H. Shabani, M. N. Ahmad abadi, Synthesis and characterisation of nano-pore antimony imprinted polymer and its use in the extraction and determination of antimony in water and fruit juice samples. Food Chem. 2014, 145, 571.
M. N. Ahmad abadi, Synthesis and characterisation of nano-pore antimony imprinted polymer and its use in the extraction and determination of antimony in water and fruit juice samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WiurvP&md5=2356c86549d1fd9bfed61e372af33dffCAS | 24128516PubMed |

[105]  Y.-H. Xu, A. Ohki, S. Maeda, Adsorption and removal of antimony from aqueous solution by an activated alumina 1. Adsorption capacity of adsorbent and effect of process variables. Toxicol. Environ. Chem. 2001, 80, 133.
Adsorption and removal of antimony from aqueous solution by an activated alumina 1. Adsorption capacity of adsorbent and effect of process variables.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFKqsL4%3D&md5=15380891a26b14a5862b3bde47328e12CAS |

[106]  A.-K. Leuz, H. Mönch, C. A. Johnson, Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environ. Sci. Technol. 2006, 40, 7277.
Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslOqsb8%3D&md5=e0dccabb754901c1a1181866739e0a0dCAS | 17180978PubMed |

[107]  X. Martínez-Lladó, J. de Pablo, J. Giménez, C. Ayora, V. Martí, M. Rovira, Sorption of antimony (V) onto synthetic goethite in carbonate medium. Solvent Extr. Ion Exch. 2008, 26, 289.
Sorption of antimony (V) onto synthetic goethite in carbonate medium.Crossref | GoogleScholarGoogle Scholar |

[108]  J. Xi, M. He, C. Lin, Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid. Environ. Earth Sci. 2010, 60, 715.
Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVSksL8%3D&md5=93e8d22a95d00c1f2c5bddda14412da6CAS |

[109]  F. Kolbe, H. Weiss, P. Morgenstern, R. Wennrich, W. Lorenz, K. Schurk, H. Stanjek, B. Daus, Sorption of aqueous antimony and arsenic species onto akaganeite. J. Colloid Interface Sci. 2011, 357, 460.
Sorption of aqueous antimony and arsenic species onto akaganeite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWksLw%3D&md5=df434bff2277e243fc8496243eccaa93CAS | 21376340PubMed |

[110]  J. Xi, M. He, C. Lin, Adsorption of antimony(III) and antimony(V) on bentonite: kinetics, thermodynamics and anion competition. Microchem. J. 2011, 97, 85.
Adsorption of antimony(III) and antimony(V) on bentonite: kinetics, thermodynamics and anion competition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2rsr3N&md5=cef526b0434a7412700064d8ebb5b27cCAS |