Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Soluble secondary minerals of antimony in Pezinok and Kremnica (Slovakia) and the question of mobility or immobility of antimony in mine waters

Juraj Majzlan A D , Martin Števko B and Tomáš Lánczos C
+ Author Affiliations
- Author Affiliations

A Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, D-07749 Jena, Germany.

B Department of Mineralogy and Petrology, Comenius University, Ilkovičova 6, SK-842 15 Bratislava, Slovakia.

C Department of Geochemistry, Comenius University, Ilkovičova 6, SK-842 15 Bratislava, Slovakia.

D Corresponding author. Email: juraj.majzlan@uni-jena.de

Environmental Chemistry 13(6) 927-935 https://doi.org/10.1071/EN16013
Submitted: 16 January 2016  Accepted: 8 April 2016   Published: 9 May 2016

Environmental context. Antimony enters the environment from tailings and mines but there are widely divergent statements about its mobility in the environment. This work addresses the question of mobility of Sb by a combination of mineralogical and geochemical studies.

Abstract. This work characterises two occurrences with an abundance of the supergene Sb minerals brandholzite [Mg[Sb(OH)6]2·6H2O], klebelsbergite [Sb4O4(OH)2(SO4)] and peretaite [CaSb4O4(OH)2(SO4)2·2H2O]. Brandholzite forms from near-neutral waters, where stibnite (Sb2S3) decomposes in the presence of abundant carbonates. The SbIII sulfates form from acidic waters, where stibnite decomposes in the presence of marcasite or pyrite (FeS2). These initial supergene minerals form rapidly (brandholzite within weeks) and supply Sb into local waters. Calculation of saturation indices from underground water (present study) and many waters discharged from Sb mines (data from the literature) show that brandholzite (and related soluble Sb minerals) are undersaturated. Hence, if they do exist, they should dissolve. Insoluble Sb phases, such as tripuhyite (FeSbO4) are grossly supersaturated, but do not form (or form very slowly). Hence, we conclude that the mobility of antimony observed in geochemical studies is due to the solubility of the initial supergene minerals. The immobility of antimony stated in mineralogical studies is due to the slow but persistent formation of insoluble tripuhyite. When the kinetics of formation of these minerals are taken into account, the widely divergent statements about mobility or immobility of antimony in the environment can be reconciled.


References

[1]  P. Leverett, A. R. McKinnon, P. A. Williams, Supergene geochemistry of the Endeavor ore body, Cobar, NSW, and relationships to other deposits in the Cobar basin, in Regolith 2005 – Ten Years of CRC LEME (Ed. I. C. Roach) 2005, pp. 191–194, (Cooperative Research Centre for Landscape Environment and Mineral Exploration).

[2]  S. Mitsunobu, T. Harada, Y. Takashi, Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ. Sci. Technol. 2006, 40, 7270.
Comparison of antimony behavior with that of arsenic under various soil redox conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVaqs7vI&md5=e036343c87933fd95348513a122be422CAS | 17180977PubMed |

[3]  G. A. Diemar, M. Filella, P. Leverett, P. A. Williams, Dispersion of antimony from oxidizing ore deposits. Pure Appl. Chem. 2009, 81, 1547.
Dispersion of antimony from oxidizing ore deposits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyru7rO&md5=9925a60a5f8090b8023714ad47ac3172CAS |

[4]  J. Majzlan, B. Lalinská, M. Chovan, U. Bläß, B. Brecht, J. Göttlicher, R. Steininger, K. Hug, S. Ziegler, J. Gescher, A mineralogical, geochemical, and microbiological assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. Am. Mineral. 2011, 96, 1.
A mineralogical, geochemical, and microbiological assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXls1ejsw%3D%3D&md5=d872a4374d5eb302df973cbf689ccdecCAS |

[5]  B. Lalinská-Voleková, J. Majzlan, T. Klimko, M. Chovan, G. Kučerová, J. Michňová, R. Hovorič, J. Göttlicher, R. Steininger, Mineralogy of the Fe–As–Sb weathering products in mine wastes and soils at several Sb deposits in Slovakia. Can. Mineral. 2012, 50, 481.
Mineralogy of the Fe–As–Sb weathering products in mine wastes and soils at several Sb deposits in Slovakia.Crossref | GoogleScholarGoogle Scholar |

[6]  A. Courtin-Nomade, O. Rakotoarisoa, H. Bril, M. Grybos, L. Forestier, F. Foucher, M. Kunz, Weathering of Sb-rich mining and smelting residues: insight in solid speciation and soil bacteria toxicity. Chem. Erde Geochem. 2012, 72, 29.
Weathering of Sb-rich mining and smelting residues: insight in solid speciation and soil bacteria toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVWhsb8%3D&md5=57965ed9b01affebd00fe8a9c700475bCAS |

[7]  P. Leverett, J. K. Reynolds, A. J. Roper, P. A. Williams, Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment. Mineral. Mag. 2012, 76, 891.
Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GhsbrP&md5=5f6f39b64aa49226b102e7b2fbe5f1f8CAS |

[8]  P. M. Ashley, D. Craw, B. P. Graham, D. A. Chappell, Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. J. Geochem. Explor. 2003, 77, 1.
Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVCnsQ%3D%3D&md5=c76e8ca1b6316a98d9bce1632f6e31d9CAS |

[9]  B. W. Vink, Stability relations of antimony and arsenic compounds in the light of revised and extended Eh–pH diagrams. Chem. Geol. 1996, 130, 21.
Stability relations of antimony and arsenic compounds in the light of revised and extended Eh–pH diagrams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslCqs7k%3D&md5=dd2181dfe1caefc301d5821271d395c0CAS |

[10]  R. Fl’aková, Z. Ženišová, O. Sracek, D. Krčmář, I. Ondrejková, M. Chovan, B. Lalinská, M. Fendeková, The behavior of arsenic and antimony at Pezinok mining site, south-western part of the Slovak Republic. Environ. Earth Sci. 2012, 66, 1043.
The behavior of arsenic and antimony at Pezinok mining site, south-western part of the Slovak Republic.Crossref | GoogleScholarGoogle Scholar |

[11]  R. Fl’aková, Z. Ženišová, Z. Drozdová, S. Milovská, Distribution of arsenic in surface and groundwater in Kolársky vrch mining area (Malé Karpaty Mts.). Podzemná Voda 2005, 11, 90.. [In Slovak]

[12]  I. Ondrejková, Z. Ženišová, R. Fľaková, D. Krčmář, O. Sracek, The distribution of antimony and arsenic in waters of the Dúbrava abandoned mine site, Slovak Republic. Mine Water Environ. 2013, 32, 207.
The distribution of antimony and arsenic in waters of the Dúbrava abandoned mine site, Slovak Republic.Crossref | GoogleScholarGoogle Scholar |

[13]  D. Kossoff, K. A. Hudson-Edwards, W. E. Dubbin, M. Alfredsson, T. Geraki, Cycling of As, P, Pb and Sb during weathering of mine tailings: implications for fluvial environments. Mineral. Mag. 2012, 76, 1209.
Cycling of As, P, Pb and Sb during weathering of mine tailings: implications for fluvial environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslaru73O&md5=ec4f224aa1cd1c7dc8993134ad7b0e0bCAS |

[14]  A. J. Desbarats, M. B. Parsons, J. B. Percival, S. Beauchemin, Y. T. J. Kwong, Geochemistry of mine waters draining a low-sulfide, gold–quartz vein deposit, Bralorne, British Columbia. Appl. Geochem. 2011, 26, 1990.
Geochemistry of mine waters draining a low-sulfide, gold–quartz vein deposit, Bralorne, British Columbia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFegsbvK&md5=95cef3d5e0e320446c10e0363018dd23CAS |

[15]  J. Druzbicka, D. Craw, Evolving metalloid signatures in waters draining from a mined orogenic gold deposit, New Zealand. Appl. Geochem. 2013, 31, 251.
Evolving metalloid signatures in waters draining from a mined orogenic gold deposit, New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVaru7c%3D&md5=2dc51cf6674f57ce24ff574d09fc15cfCAS |

[16]  S. E. Fawcett, H. E. Jamieson, D. K. Nordstrom, R. B. McCleskey, Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada. Appl. Geochem. 2015, 62, 3.
Arsenic and antimony geochemistry of mine wastes, associated waters and sediments at the Giant Mine, Yellowknife, Northwest Territories, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotVartw%3D%3D&md5=0e4e7f0e4066d972f4138ae01b5cc1ffCAS |

[17]  D. L. Parkhurst, C. A. J. Appelo, User’s Guide to PHREEQC (Version 2) – a Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. US Geological Survey Water-Resources Investigations Report 99–4259 1999 (Boulder, CO, USA).

[18]  M. Filella, P. M. May, Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters. Geochim. Cosmochim. Acta 2003, 67, 4013.
Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Slu74%3D&md5=7ac7ab4a1070e1a189518eef324d1a05CAS |

[19]  M. Accornero, L. Marini, M. Lelli, The dissociation constant of antimonic acid at 10–40 °C. J. Solution Chem. 2008, 37, 785.
The dissociation constant of antimonic acid at 10–40 °C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvV2ltb4%3D&md5=7241fda33e66aa065301ce206cb682bdCAS |

[20]  A. J. Roper, P. Leverett, T. D. Murphy, P. A. Williams, D. E. Hibbs, Klebelsbergite, Sb4O4SO4(OH)2: stability relationships, formation in nature, and refinement of its structure. Am. Mineral. 2015, 100, 602.
Klebelsbergite, Sb4O4SO4(OH)2: stability relationships, formation in nature, and refinement of its structure.Crossref | GoogleScholarGoogle Scholar |

[21]  A. J. Roper, P. Leverett, T. D. Murphy, P. A. Williams, Stabilities of byströmite, MgSb2O6, ordoñezite, ZnSb2O6 and rosiaite, PbSb2O6, and their possible roles in limiting antimony mobility in the supergene zone. Mineral. Mag. 2015, 79, 537.
Stabilities of byströmite, MgSb2O6, ordoñezite, ZnSb2O6 and rosiaite, PbSb2O6, and their possible roles in limiting antimony mobility in the supergene zone.Crossref | GoogleScholarGoogle Scholar |

[22]  J. L. Pouchou, F. Pichoir, PAP (φρZ) procedure for improved quantitative microanalysis, in Microbeam Analysis (Ed. J. T. Armstrong) 1985, pp. 104–106 (San Francisco Press: San Francisco, CA, USA).

[23]  S. P. Korikovskij, B. Cambel, J. Miklóš, M. Janák, The metamorphism of the Malé Karpaty Mts crystalline complex: stages, zoning, relationships to granites. Geol. Carpath. 1984, 35, 437.. [In Russian]

[24]  B. Cambel, M. Khun, Geochemical characteristics of black shales from ore-bearing complex of the Malé Karpaty. Geol. Carpath. 1983, 34, 15.
| 1:CAS:528:DyaL3sXksVWgsL0%3D&md5=49290f3be020afc8f17147721eb820fbCAS |

[25]  M. Chovan, M. Háber, S. Jeleň, I. Rojkovič (Eds), Ore Textures in the Western Carpathians 1994 (Slovak Academic Press: Bratislava, Slovakia).

[26]  P. Koděra, V. Šucha, J. Lexa, A. E. Fallick, The Kremnica Au–Ag epithermal deposit: an example of laterally outflowing hydrothermal system?, in Digging Deeper. Proceedings of the 9th SGA Biennial Meeting, 20–23 August 2007, Dublin, Ireland (Eds C. J. Andrew et al.) 2007, pp. 173–176 (Irish Association for Economic Geology). [Abstract].

[27]  F. Bakos, M. Chovan, Gold in Slovakia 2004 (Slovenský Skauting: Bratislava, Slovakia).

[28]  L’. Mat’o, M. Háber, J. Knésl, The occurrence of Te minerals in the Kremnica ore district. Mineralia Slovaca 1987, 19, 457.. [In Slovak]
| 1:CAS:528:DyaL1cXkvFKjtL0%3D&md5=a44184ac334a37c2d7b5d375386d4a4bCAS |

[29]  M. Sidorová, P. Čorej, J. Bocan, Geological survey, resources and properties of the Ag- and Au-containing ore in the Kremnica–Sturec deposit, Slovakia. Acta Montan. Slovaca 2014, 19, 192.

[30]  J. Sejkora, D. Ozdín, R. Ďud’a, The supergene mineral association with brandholzite from Pernek, Malé Karpaty Mountains, Slovak Republic. J. Geosci. 2010, 55, 149.
| 1:CAS:528:DC%2BC3cXhtFOiurvI&md5=a394c98454b83f95fda646c5d73456ffCAS |

[31]  A. Friedrich, M. Wildner, E. Tillmanns, P. Merz, Crystal chemistry of the new mineral brandholzite, Mg(H2O)6[Sb(OH)6]2, and of the synthetic analogues M2+(H2O)6[Sb(OH)6]2 (M2+ = Mg, Co). Am. Mineral. 2000, 85, 593.
Crystal chemistry of the new mineral brandholzite, Mg(H2O)6[Sb(OH)6]2, and of the synthetic analogues M2+(H2O)6[Sb(OH)6]2 (M2+ = Mg, Co).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVaqtrg%3D&md5=eb6ccaa3e2a01821ddecd71fd309c5d4CAS |

[32]  N. Cipriani, S. Menchetti, C. Sabelli, Peretaite, CaSb4O4(OH)2(SO4)2·2H2O, a new mineral from Pereta, Tuscany, Italy. Am. Mineral. 1980, 65, 936.
| 1:CAS:528:DyaL3MXhvVentg%3D%3D&md5=5f900726194aa0c1a651c6b86ef2401dCAS |

[33]  M. Filella, S. Philippo, N. Belzile, Y. Chen, F. Quentel, Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg. Sci. Total Environ. 2009, 407, 6205.
Natural attenuation processes applying to antimony: a study in the abandoned antimony mine in Goesdorf, Luxembourg.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCmt77M&md5=f81a43a96bfd7261148bfd51a8d0c0e7CAS | 19775729PubMed |

[34]  P. Orlandi, C. Biagioni, E. Michelucci, Brandholzite. The first Italian find near the Bottino mine, Apuan Alps. Rivista Mineral. Ital. 2013, 2013, 130.. [In Italian]

[35]  V. J. Ritchie, A. G. Ilgen, S. H. Mueller, T. P. Trainor, R. J. Goldfarb, Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska. Chem. Geol. 2013, 335, 172.
Mobility and chemical fate of antimony and arsenic in historic mining environments of the Kantishna Hills district, Denali National Park and Preserve, Alaska.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlWg&md5=b2f58acfccf7c35dc1e05005fce5d16fCAS |

[36]  A. Navrotsky, L. Mazeina, J. Majzlan, Size-driven structural and thermodynamic complexity in iron oxides. Science 2008, 319, 1635.
Size-driven structural and thermodynamic complexity in iron oxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVamurw%3D&md5=d5c498326e889b3a4315ac94a7be3103CAS | 18356516PubMed |

[37]  B. Lafuente, R. T. Downs, H. Yang, N. Stone, The power of databases: the RRUFF project, in Highlights in Mineralogical Crystallography (Eds T. Armbruster, R. M. Danisi) 2015, pp. 1–30 (Walter de Gruyter GmbH: Berlin, Germany).

[38]  N. Cipriani, S. Menchetti, C. Sabelli, Klebelsbergite and another antimony mineral from Pereta, Tuscany, Italy. Neues Jahrb. Mineral. Monatsh. 1980, 5, 223.

[39]  S. Menchetti, C. Sabelli, The crystal structure of klebelsbergite, Sb4O4(OH)2SO4. Am. Mineral. 1980, 65, 931.
| 1:CAS:528:DyaL3cXlvFGqsro%3D&md5=454bf4f754ef0cbdf6c6808417570f94CAS |

[40]  I. Nakai, D. E. Appleman, Klebelsbergite, Sb4O4(OH)2SO4: redefinition and synthesis. Am. Mineral. 1980, 65, 499.
| 1:CAS:528:DyaL3cXltFOgsbw%3D&md5=c80d11a0be22902e404f17db82939398CAS |

[41]  S. Menchetti, C. Sabelli, Peretaite, CaSb4O4(OH)2(SO4)2·2H2O: its atomic arrangement and twinning. Am. Mineral. 1980, 65, 940.
| 1:CAS:528:DyaL3MXhvVektLw%3D&md5=9c01e3fc328e166bbc9e786787f0c016CAS |

[42]  A. J. Desbarats, M. B. Parsons, J. B. Percival, Y. T. J. Kwong, S. Beauchemin, Characterization of the Flow and Chemistry of Adit Drainage, Bralorne Mine, Bralorne, BC Geological Survey Canada, Open File 6345 2010 (Ottawa, ON). Available at http://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/geoscan_e.web [verified 15 April 2016].

[43]  P. M. Ashley, B. P. Graham, Heavy Metal Loadings of Streams in the Macleay River Catchment. Geological Survey of NSW, Open File Report GS2001/303 2001 (Armidale, NSW, Australia).

[44]  V. J. Ritchie, Mobility and Chemical Fate of Antimony and Arsenic in Historic Mining Environments of Kantishna Hills, Denali National Park and Preserve, Alaska 2011, M.Sc. thesis, University of Alaska Fairbanks.