Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW

Marine microplastic-associated biofilms – a review

Sonja Oberbeckmann A C , Martin G. J. Löder B and Matthias Labrenz A
+ Author Affiliations
- Author Affiliations

A Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Biological Oceanography, Seestrasse 15, D-18119 Rostock-Warnemünde, Germany.

B Animal Ecology I, University of Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany.

C Corresponding author. Email: sonja.oberbeckmann@io-warnemuende.de




Sonja Oberbeckmann is a microbiologist exploring anthropogenic influences on marine microbial communities. She graduated in 2011 from Jacobs University Bremen, Germany. Her thesis was on the effect of climate change on potentially pathogenic Vibrio populations in the German Bight, carried out at the Alfred Wegener Institute–Helmholtz Centre for Polar and Marine Research, Helgoland, Germany. Since then, Sonja has devoted her time to the issue of microplastics in marine waters and the interaction between these particles and microorganisms. After spending over 2 years abroad as a postdoctoral fellow (University Hull and Lincoln, UK, and University Michigan, Ann Arbor, MI, USA), she returned to Germany to coordinate the MikrOMIK project at the Leibniz Institute for Baltic Sea Research Warnemünde.



Martin Löder is a postdoctoral fellow at the chair of Animal Ecology I at the University of Bayreuth, Germany. After studying environmental engineering, he obtained a Ph.D. in biology from Jacobs University Bremen, Germany, in 2010. During his doctoral research at the Alfred Wegener Institute–Helmholtz Centre for Polar and Marine Research, Helgoland, Germany, he investigated the role of microzooplankton grazers in the marine food web. Since 2011 he has focussed on microplastic research, and is one of the experts in microplastic sampling in aquatic systems, sample extraction, and purification and identification of microplastics with spectroscopic techniques (Fourier-transform (FT)IR, Raman). After 3 years of research and methodological development, he is now involved in several national projects on the detection and quantification of microplastics in marine and freshwater ecosystems as well as the ecological implications of microplastics.



Matthias Labrenz completed his Ph.D. thesis at the Institute for General Microbiology, Kiel, Germany. As postdoctoral research associate, he stayed at the Department of Geology and Geophysics, University of Wisconsin, Madison, WI, USA, as well as at the German Research Centre for Biotechnology, Braunschweig. Since 2003, he has been a senior scientist at the Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Biological Oceanography Section, and received the Venia legendi in microbiology at the University of Rostock, Germany, in 2009. Currently, he is the head of the ‘Environmental Microbiology’ working group within the Biological Oceanography section of the IOW. The group focuses on the importance and function of microorganisms or microbial communities in aquatic ecosystems, especially in the Baltic Sea.

Environmental Chemistry 12(5) 551-562 https://doi.org/10.1071/EN15069
Submitted: 10 October 2014  Accepted: 7 July 2015   Published: 17 September 2015

Environmental context. Marine microbial communities, which play a crucial role in all biogeochemical processes in the oceans, could be affected by microplastic pollution. Research is necessary to understand the interactions between marine microbial communities and microplastics, and to explore the potential for microplastics to serve as transport systems for pathogenic microorganisms. Our review summarises first insights into these topics and discusses gaps in our current knowledge.

Abstract. The accumulation of plastic in the marine environment is a long-known issue, but the potential relevance of this pollution for the ocean has been recognised only recently. Within this context, microplastic fragments (<5 mm) represent an emerging topic. Owing to their small size, they are readily ingested by marine wildlife and can accumulate in the food web, along with associated toxins and microorganisms colonising the plastic. We are starting to understand that plastic biofilms are diverse and are, comparably with non-plastic biofilms, driven by a complex network of influences, mainly spatial and seasonal factors, but also polymer type, texture and size of the substratum. Within this context, we should raise the question about the potential of plastic particles to serve as vectors for harmful microorganisms. The main focus of the review is the discussion of first insights and research gaps related to microplastic-associated microbial biofilm communities.

Additional keywords: biofilm communities, marine plastic pollution, microorganisms, microplastics.


References

[1]  J. A. Ivar do Sul, M. F. Costa, The present and future of microplastic pollution in the marine environment. Environ. Pollut. 2014, 185, 352.
The present and future of microplastic pollution in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKgsLfE&md5=24560c55d83fd778f6f2cfa10272e53aCAS | 24275078PubMed |

[2]  Marine Debris in the North Pacific – A Summary of Existing Information and Identification of Data Gaps 2011 (United States Environmental Protection Agency: San Francisco, CA).

[3]  D. K. A. Barnes, F. Galgani, R. C. Thompson, M. Barlaz, Accumulation and fragmentation of plastic debris in global environments. Philos. T. Roy. Soc. B 2009, 364, 1985.
Accumulation and fragmentation of plastic debris in global environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Skt7w%3D&md5=c29927e7454ccee2ea68a6c4ffedea9bCAS |

[4]  F. Galgani, G. Hanke, S. Werner, L. De Vrees, Marine litter within the European marine Strategy Framework Directive. ICES J. Mar. Sci. 2013, 70, 1055.
Marine litter within the European marine Strategy Framework Directive.Crossref | GoogleScholarGoogle Scholar |

[5]  J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, L. Lavender Law, Plastic waste inputs from land into the ocean. Science 2015, 347, 768.
Plastic waste inputs from land into the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlKktrs%3D&md5=17b4697bb04f6e2b241c0460682889d6CAS | 25678662PubMed |

[6]  S. B. Sheavly, K. M. Register, Marine debris & plastics: environmental concerns, sources, impacts and solutions. J. Polym. Environ. 2007, 15, 301.
Marine debris & plastics: environmental concerns, sources, impacts and solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslyqu7k%3D&md5=e0601c3287190235118b6621d380c697CAS |

[7]  A. L. Andrady, Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596.
Microplastics in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFKrt74%3D&md5=023b7d5ac18234cb7abff5171550439aCAS | 21742351PubMed |

[8]  M. Eriksen, L. C. M. Lebreton, H. S. Carson, M. Thiel, C. J. Moore, J. C. Borerro, F. Galgani, P. G. Ryan, J. Reisser, Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250 000 tons afloat at sea. PLoS One 2014, 9, e111913.
Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250 000 tons afloat at sea.Crossref | GoogleScholarGoogle Scholar | 25494041PubMed |

[9]  C. Arthur, J. Baker, H. Bamford, (Eds) Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, 9–11 September 2008, Tacoma, WA, USA 2009, NOAA Technical Memorandum NOS-OR&R-30 (National Oceanic and Atmospheric Administration: Silver Spring, MD).

[10]  L. S. Fendall, M. A. Sewell, Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225.
Contributing to marine pollution by washing your face: microplastics in facial cleansers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslamt78%3D&md5=5caad496b86d56a356408aa80b54e07cCAS | 19481226PubMed |

[11]  M. R. Gregory, Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified. Mar. Pollut. Bull. 1996, 32, 867.
Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVCqtA%3D%3D&md5=573a3ce45eefd96e38231502c2ef06a6CAS |

[12]  M. A. Browne, P. Crump, S. J. Niven, E. Teuten, A. Tonkin, T. Galloway, R. Thompson, Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ. Sci. Technol. 2011, 45, 9175.
Accumulation of microplastic on shorelines worldwide: sources and sinks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Gks7bN&md5=0004f85a816e01343ea841b1c13ca432CAS | 21894925PubMed |

[13]  Y. Ogata, H. Takada, K. Mizukawa, H. Hirai, S. Iwasa, S. Endo, Y. Mato, M. Saha, K. Okuda, A. Nakashima, M. Murakami, N. Zurcher, R. Booyatumanondo, M. P. Zakaria, L. Q. Dung, M. Gordon, C. Miguez, S. Suzuki, C. Moore, H. K. Karapanagioti, S. Weerts, T. McClurg, E. Burres, W. Smith, M. Van Velkenburg, J. Selby Lang, R. C. Lang, D. Laursen, B. Danner, N. Stewardson, R. C. Thompson, International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar. Pollut. Bull. 2009, 58, 1437.
International pellet watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFygs7zK&md5=7b92670f2441ead79b7c9cdd199c924aCAS | 19635625PubMed |

[14]  D. A. Cooper, P. L. Corcoran, Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar. Pollut. Bull. 2010, 60, 650.
Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVehsrw%3D&md5=58b54c7067a737d0bfc89cd9d932b673CAS | 20106491PubMed |

[15]  R. C. Thompson, C. J. Moore, F. S. vom Saal, S. H. Swan, Plastics, the environment and human health: current consensus and future trends. Philos. T. Roy. Soc. B 2009, 364, 2153.
Plastics, the environment and human health: current consensus and future trends.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1SktL8%3D&md5=28a75bd1b1f227766ab39c035ea12b53CAS |

[16]  M. A. Browne, T. S. Galloway, R. C. Thompson, Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 2010, 44, 3404.
Spatial patterns of plastic debris along estuarine shorelines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlyjtb4%3D&md5=6c6adb982561be02195c26f040eba178CAS | 20377170PubMed |

[17]  M. Claessens, S. De Meester, L. Van Landuyt, K. De Clerck, C. R. Janssen, Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 2011, 62, 2199.
Occurrence and distribution of microplastics in marine sediments along the Belgian coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ajt7jF&md5=edeae5137c179ce9b5ad26009fc27ca5CAS | 21802098PubMed |

[18]  J. P. Desforges, M. Galbraith, N. Dangerfield, P. S. Ross, Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 2014, 79, 94.
Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislyqsQ%3D%3D&md5=6789734222ad295a1b73d720bff6beffCAS | 24398418PubMed |

[19]  V. Hidalgo-Ruz, L. Gutow, R. C. Thompson, M. Thiel, Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060.
Microplastics in the marine environment: a review of the methods used for identification and quantification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitVGhurY%3D&md5=2acb9685cd991453468574d7dc04148eCAS | 22321064PubMed |

[20]  K. L. Ng, J. P. Obbard, Prevalence of microplastics in Singapore’s coastal marine environment. Mar. Pollut. Bull. 2006, 52, 761.
Prevalence of microplastics in Singapore’s coastal marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xns1KhsLw%3D&md5=5ba4d3b8f3ecd9529cd981403989c47aCAS | 16388828PubMed |

[21]  L. Van Cauwenberghe, A. Vanreusel, J. Mees, C. R. Janssen, Microplastic pollution in deep-sea sediments. Environ. Pollut. 2013, 182, 495.
Microplastic pollution in deep-sea sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVejurbN&md5=fcbe5832343a67e12a491ee56c24eb7aCAS | 24035457PubMed |

[22]  A. Vianello, A. Boldrin, P. Guerriero, V. Moschino, R. Rella, A. Sturaro, L. Da Ros, Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification. Estuar. Coast. Shelf Sci. 2013, 130, 54.
Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Cmtrk%3D&md5=5beb1db8bfbf0b781d73c7228555c8fbCAS |

[23]  L. C. Woodall, A. Sanchez-Vidal, M. Canals, G. L. J. Paterson, R. Coppock, V. Sleight, A. Calafat, A. D. Rogers, B. E. Narayanaswamy, R. C. Thompson, The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 2014, 1, 140317.
The deep sea is a major sink for microplastic debris.Crossref | GoogleScholarGoogle Scholar | 26064573PubMed |

[24]  D. K. A. Barnes, Natural and plastic flotsam stranding in the Indian Ocean, in The Effects of Human Transport on Ecosystems: Cars and Planes, Boats and Trains (Eds J. Davenport, J. L. Davenport) 2004, pp. 193–205 (Royal Irish Academy: Dublin).

[25]  K. L. Law, S. Moret-Ferguson, N. A. Maximenko, G. Proskurowski, E. E. Peacock, J. Hafner, C. M. Reddy, Plastic accumulation in the North Atlantic subtropical gyre. Science 2010, 329, 1185.
Plastic accumulation in the North Atlantic subtropical gyre.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hsr7J&md5=c95c0fb23e15170a4a77516fa330f602CAS | 20724586PubMed |

[26]  C. J. Moore, S. L. Moore, M. K. Leecaster, S. B. Weisberg, A comparison of plastic and plankton in the North Pacific central gyre. Mar. Pollut. Bull. 2001, 42, 1297.
A comparison of plastic and plankton in the North Pacific central gyre.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFGgtL0%3D&md5=e9d29e2cb460847a5809773bf08a5f1cCAS | 11827116PubMed |

[27]  M. Eriksen, N. Maximenko, M. Thiel, A. Cummins, G. Lattin, S. Wilson, J. Hafner, A. Zellers, S. Rifman, Plastic pollution in the South Pacific subtropical gyre. Mar. Pollut. Bull. 2013, 68, 71.
Plastic pollution in the South Pacific subtropical gyre.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFygug%3D%3D&md5=423c3d25c581034719e4f9809f916001CAS | 23324543PubMed |

[28]  J. Reisser, B. Slat, K. Noble, K. du Plessis, M. Epp, M. Proietti, J. de Sonneville, T. Becker, C. Pattiaratchi, The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic gyre. Biogeosciences 2015, 12, 1249.
The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic gyre.Crossref | GoogleScholarGoogle Scholar |

[29]  A. Cozar, F. Echevarria, J. I. Gonzalez-Gordillo, X. Irigoien, B. Ubeda, S. Hernandez-Leon, Á. T. Palma, S. Navarro, J. García-de-Lomas, A. Ruiz, M. L. Fernández-de-Puelles, C. M. Duarte, Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10 239.
Plastic debris in the open ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOitL%2FE&md5=51eb383c1c6feeec3795de715aae99dcCAS |

[30]  J. A. Ivar do Sul, A. Spengler, M. F. Costa, Here, there and everywhere. Small plastic fragments and pellets on beaches of Fernando de Noronha (equatorial western Atlantic). Mar. Pollut. Bull. 2009, 58, 1236.
Here, there and everywhere. Small plastic fragments and pellets on beaches of Fernando de Noronha (equatorial western Atlantic).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslamt70%3D&md5=13be77c4f0ba1ce9c369d4f859ae85d5CAS |

[31]  M. Claessens, S. De Meester, L. Van Landuyt, K. De Clerck, C. R. Janssen, Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 2011, 62, 2199.
Occurrence and distribution of microplastics in marine sediments along the Belgian coast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ajt7jF&md5=edeae5137c179ce9b5ad26009fc27ca5CAS | 21802098PubMed |

[32]  M. R. Gregory, Virgin plastic granules on some beaches of eastern Canada and Bermuda. Mar. Environ. Res. 1983, 10, 73.
Virgin plastic granules on some beaches of eastern Canada and Bermuda.Crossref | GoogleScholarGoogle Scholar |

[33]  J. P. Harrison, M. Sapp, M. Schratzberger, A. M. Osborn, Interactions between microorganisms and marine microplastics: a call for research. Mar. Technol. Soc. J. 2011, 45, 12.
Interactions between microorganisms and marine microplastics: a call for research.Crossref | GoogleScholarGoogle Scholar |

[34]  S. Morét-Ferguson, K. L. Law, G. Proskurowski, E. K. Murphy, E. E. Peacock, C. M. Reddy, The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 2010, 60, 1873.
The size, mass, and composition of plastic debris in the western North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 20709339PubMed |

[35]  S. Ye, A. L. Andrady, Fouling of floating plastic debris under Biscayne Bay exposure conditions. Mar. Pollut. Bull. 1991, 22, 608.
Fouling of floating plastic debris under Biscayne Bay exposure conditions.Crossref | GoogleScholarGoogle Scholar |

[36]  T. Kiessling, L. Gutow, M. Thiel, Marine litter as habitat and dispersal vector, in Marine Anthropogenic Litter (Eds M. Bergmann, L. Gutow, M. Klages) 2015, pp. 141–181 (Springer International Publishing: Cham, UK).

[37]  M. Thiel, L. Gutow, The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr. Mar. Biol. Annu. Rev. 2005, 42, 181.

[38]  M. Thiel, L. Gutow, The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr. Mar. Biol. Annu. Rev. 2005, 43, 279.
The ecology of rafting in the marine environment. II. The rafting organisms and community.Crossref | GoogleScholarGoogle Scholar |

[39]  M. R. Gregory, Environmental implications of plastic debris in marine settings – entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. T. Roy. Soc. B 2009, 364, 2013.
Environmental implications of plastic debris in marine settings – entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions.Crossref | GoogleScholarGoogle Scholar |

[40]  D. K. A. Barnes, Human rubbish assists alien invasions of seas. ScientificWorldJournal 2002, 2, 107.

[41]  S. Aliani, A. Molcard, Hitch-hiking on floating marine debris: macrobenthic species in the western Mediterranean Sea. Hydrobiologia 2003, 503, 59.
Hitch-hiking on floating marine debris: macrobenthic species in the western Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

[42]  D. K. A. Barnes, Biodiversity – invasions by marine life on plastic debris. Nature 2002, 416, 808.
Biodiversity – invasions by marine life on plastic debris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFyksL0%3D&md5=9db3409751e07f8d3c77a171755ee40aCAS |

[43]  J. C. Astudillo, M. Bravo, C. P. Dumont, M. Thiel, Detached aquaculture buoys in the SE Pacific: potential dispersal vehicles for associated organisms. Aquat. Biol. 2009, 5, 219.
Detached aquaculture buoys in the SE Pacific: potential dispersal vehicles for associated organisms.Crossref | GoogleScholarGoogle Scholar |

[44]  D. K. A. Barnes, K. P. P. Fraser, Rafting by five phyla on man-made flotsam in the Southern Ocean. Mar. Ecol. Prog. Ser. 2003, 262, 289.
Rafting by five phyla on man-made flotsam in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

[45]  C. West, The significance of small plastic boats as seed dispersal agents. Tane 1981, 27, 175.

[46]  M. R. Gregory, Accumulation and distribution of virgin plastic granules on New Zealand beaches. N. Z. J. Mar. Freshw. Res. 1978, 12, 399.
Accumulation and distribution of virgin plastic granules on New Zealand beaches.Crossref | GoogleScholarGoogle Scholar |

[47]  D. K. A. Barnes, P. Milner, Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar. Biol. 2005, 146, 815.
Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

[48]  M. Maso, E. Garces, F. Pages, J. Camp, Drifting plastic debris as a potential vector for dispersing harmful algal bloom (HAB) species. Sci. Mar. 2003, 67, 107.

[49]  M. C. Goldstein, M. Rosenberg, L. Cheng, Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol. Lett. 2012, 8, 817.
Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect.Crossref | GoogleScholarGoogle Scholar | 22573831PubMed |

[50]  S. L. Wright, R. C. Thompson, T. S. Galloway, The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 2013, 178, 483.
The physical impacts of microplastics on marine organisms: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVCrtLc%3D&md5=e8d21e474857816bde6b082a00007f7bCAS | 23545014PubMed |

[51]  L. R. Pomeroy, P. J. I. Williams, F. Azam, J. E. Hobbie, The microbial loop. Oceanography 2007, 20, 28.
The microbial loop.Crossref | GoogleScholarGoogle Scholar |

[52]  D. P. Bakker, A. van der Mats, G. J. Verkerke, H. J. Busscher, H. C. van der Mei, Comparison of velocity profiles for different flow-chamber designs used in studies of microbial adhesion to surfaces. Appl. Environ. Microbiol. 2003, 69, 6280.
Comparison of velocity profiles for different flow-chamber designs used in studies of microbial adhesion to surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlKjsbg%3D&md5=a32fe932288192f5d7d2b7e4edfbca8fCAS | 14532092PubMed |

[53]  H. C. Flemming, J. Wingender, The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623.
| 1:CAS:528:DC%2BC3cXpsFWlur4%3D&md5=f482c23d63f2792971b4c9ef971b97c1CAS | 20676145PubMed |

[54]  S. E. Newell, D. Eveillard, M. J. McCarthy, W. S. Gardner, Z. Liu, B. B. Ward, A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico. Environ. Microbiol. Rep. 2014, 6, 106.
A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1elu7w%3D&md5=ecefbad9bf0f508c4c6aadb4dfced604CAS | 24596268PubMed |

[55]  B. Nogales, M. P. Lanfranconi, J. M. Piña-Villalonga, R. Bosch, Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev. 2011, 35, 275.
Anthropogenic perturbations in marine microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVaitbs%3D&md5=af780584266f3ab15b93763793afc42fCAS | 20738403PubMed |

[56]  R. T. Darby, A. M. Kaplan, Fungal susceptibility of polyurethanes. Appl. Microbiol. 1968, 16, 900.
| 1:CAS:528:DyaF1cXktF2rt7k%3D&md5=d861edd5ae489899043841f76dc9c821CAS | 16349806PubMed |

[57]  Plastics – the Facts 2010, an Analysis of European Plastics Production, Demand and Recovery for 2009 2010 (Plastics Europe, Association of Plastic Manufacturers: Brussels).

[58]  Municipal Solid Waste in the United States: 2011 Facts and Figures 2013 (United States Environmental Protection Agency: Washington, DC).

[59]  S. K. Ghosh, S. Pal, S. Ray, Study of microbes having potentiality for biodegradation of plastics. Environ. Sci. Pollut. Res. 2013, 20, 4339.
Study of microbes having potentiality for biodegradation of plastics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVeit7vJ&md5=bd99ceef2df7bec013385f1174f74b5dCAS |

[60]  A. A. Shah, F. Hasan, A. Hameed, S. Ahmed, Biological degradation of plastics: a comprehensive review. Biotechnol. Adv. 2008, 26, 246.
Biological degradation of plastics: a comprehensive review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktlGgsr8%3D&md5=0a3bae13faf9043dc4fc8368e65ea0a7CAS | 18337047PubMed |

[61]  A. Sivan, New perspectives in plastic biodegradation. Curr. Opin. Biotechnol. 2011, 22, 422.
New perspectives in plastic biodegradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFSqu7Y%3D&md5=7663c772a73d298ed41c867a67ab1e7eCAS | 21356588PubMed |

[62]  A. Loredo-Treviño, G. Gutierrez-Sanchez, R. Rodriguez-Herrera, C. N. Aguilar, Microbial enzymes involved in polyurethane biodegradation: a review. J. Polym. Environ. 2012, 20, 258.
Microbial enzymes involved in polyurethane biodegradation: a review.Crossref | GoogleScholarGoogle Scholar |

[63]  S. R. Barratt, A. R. Ennos, M. Greenhalgh, G. D. Robson, P. S. Handley, Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water-holding capacities. J. Appl. Microbiol. 2003, 95, 78.
Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water-holding capacities.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s3otVyltg%3D%3D&md5=934414f217af74069e0aaf0ed313680bCAS | 12807456PubMed |

[64]  J. R. Russell, J. Huang, P. Anand, K. Kucera, A. G. Sandoval, K. W. Dantzler, D. Hickman, J. Jee, F. M. Kimovec, D. Koppstein, D. H. Marks, P. A. Mittermiller, S. J. Núñez, M. Santiago, M. A. Townes, M. Vishnevetsky, N. E. Williams, M. P. Núñez Vargas, L.-A. Boulanger, C. Bascom-Slack, S. A. Strobel, Biodegradation of polyester polyurethane by endophytic fungi. Appl. Environ. Microbiol. 2011, 77, 6076.
Biodegradation of polyester polyurethane by endophytic fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OjurnK&md5=b095e8ea1d74313a7f6fa8e4d592fb55CAS | 21764951PubMed |

[65]  Y. Akutsu, T. Nakajima-Kambe, N. Nomura, T. Nakahara, Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl. Environ. Microbiol. 1998, 64, 62.
| 1:CAS:528:DyaK1cXitVamuw%3D%3D&md5=7ed2d8d6e12485e33ad7f00b396c6793CAS | 16349494PubMed |

[66]  G. Mathur, A. Mathur, R. Prasad, Colonization and degradation of thermally oxidized high-density polyethylene by Aspergillus niger (ITCC no. 6052) isolated from plastic waste dumpsite. Bioremediat. J. 2011, 15, 69.
Colonization and degradation of thermally oxidized high-density polyethylene by Aspergillus niger (ITCC no. 6052) isolated from plastic waste dumpsite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFGiu7w%3D&md5=328639151a9b7e59f11c939b5b731743CAS |

[67]  R.-J. Mueller, Biological degradation of synthetic polyesters – enzymes as potential catalysts for polyester recycling. Process Biochem. 2006, 41, 2124.
Biological degradation of synthetic polyesters – enzymes as potential catalysts for polyester recycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Cltr4%3D&md5=46d86dbb25fe081e472021cf088c7b9fCAS |

[68]  N. Yamano, A. Nakayama, N. Kawasaki, N. Yamamoto, S. Aiba, Mechanism and characterization of polyamide 4 degradation by Pseudomonas sp. J. Polym. Environ. 2008, 16, 141.
Mechanism and characterization of polyamide 4 degradation by Pseudomonas sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyls7rO&md5=42bc2cfc3b4ff394efd5a0fd270919c2CAS |

[69]  M. Sudhakar, C. Priyadarshini, M. Doble, P. S. Murthy, R. Venkatesan, Marine bacteria-mediated degradation of nylon 66 and 6. Int. Biodeterior. Biodegradation 2007, 60, 144.
Marine bacteria-mediated degradation of nylon 66 and 6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSksbzM&md5=9dfd1fa3bb284a174d602a9b11e58fa9CAS |

[70]  T. Deguchi, Y. Kitaoka, M. Kakezawa, T. Nishida, Purification and characterization of a nylon-degrading enzyme. Appl. Environ. Microbiol. 1998, 64, 1366.
| 1:CAS:528:DyaK1cXitlCisLY%3D&md5=7062d66e3ef24599036394790300006cCAS | 9546174PubMed |

[71]  J. Yang, Y. Yang, W.-M. Wu, J. Zhao, L. Jiang, Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 2014, 48, 13776.
Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyrurbO&md5=6d39520e2d933183a6ecd9bafd823a06CAS | 25384056PubMed |

[72]  J. Reisser, J. Shaw, G. Hallegraeff, M. Proietti, D. K. Barnes, M. Thums, C. Wilcox, B. D. Hardesty, C. Pattiaratchi, Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS One 2014, 9, e100289.
Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates.Crossref | GoogleScholarGoogle Scholar | 24941218PubMed |

[73]  E. R. Zettler, T. J. Mincer, L. A. Amaral-Zettler, Life in the ‘plastisphere’: microbial communities on plastic marine debris. Environ. Sci. Technol. 2013, 47, 7137.
| 1:CAS:528:DC%2BC3sXptFeht7w%3D&md5=ba4d5cb31e1d289133f39f3ee5b73b6dCAS | 23745679PubMed |

[74]  C. Zobell, The effect of solid surfaces upon bacterial activity. J. Bacteriol. 1943, 46, 39.
| 1:CAS:528:DyaH3sXjslGqug%3D%3D&md5=9240ad07af4d9bc1e323d29ed0149d5cCAS | 16560677PubMed |

[75]  D. P. Bakker, J. W. Klijnstra, H. J. Busscher, H. C. van der Mei, The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons. Biofouling 2003, 19, 391.
The effect of dissolved organic carbon on bacterial adhesion to conditioning films adsorbed on glass from natural seawater collected during different seasons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps12hsr0%3D&md5=7f3eb563b7b977811f1cf7effaf1d5c4CAS | 14768468PubMed |

[76]  N. B. Bhosle, A. Garg, L. Fernandes, P. Citon, Dynamics of amino acids in the conditioning film developed on glass panels immersed in the surface seawaters of Dona Paula Bay. Biofouling 2005, 21, 99.
Dynamics of amino acids in the conditioning film developed on glass panels immersed in the surface seawaters of Dona Paula Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslykt7c%3D&md5=fdf08b04dc98ebf7da0fa3d92c7fe7b4CAS | 16167390PubMed |

[77]  N. Siboni, M. Lidor, E. Kramarsky-Winter, A. Kushmaro, Conditioning film and initial biofilm formation on ceramics tiles in the marine environment. FEMS Microbiol. Lett. 2007, 274, 24.
Conditioning film and initial biofilm formation on ceramics tiles in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSgt7nF&md5=ec6d3911be25c59d88ecbf212e221d95CAS | 17578524PubMed |

[78]  J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappinscott, Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711.
Microbial biofilms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovVWjtbg%3D&md5=9a0f666861a824af65a92ab839b57b4eCAS | 8561477PubMed |

[79]  K. W. Tang, V. Turk, H. P. Grossart, Linkage between crustacean zooplankton and aquatic bacteria. Aquat. Microb. Ecol. 2010, 61, 261.
Linkage between crustacean zooplankton and aquatic bacteria.Crossref | GoogleScholarGoogle Scholar |

[80]  H. P. Grossart, T. Kiorboe, K. Tang, H. Ploug, Bacterial colonization of particles: growth and interactions. Appl. Environ. Microbiol. 2003, 69, 3500.
Bacterial colonization of particles: growth and interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1Glurg%3D&md5=ac911ec48434c4cf13f830c3d24455abCAS | 12788756PubMed |

[81]  H. W. Paerl, J. L. Pinckney, A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb. Ecol. 1996, 31, 225.
A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling.Crossref | GoogleScholarGoogle Scholar | 8661534PubMed |

[82]  L. Hall-Stoodley, J. W. Costerton, P. Stoodley, Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95.
Bacterial biofilms: from the natural environment to infectious diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFGlsg%3D%3D&md5=8266f2d5f1508435f43c71a3f5430ff1CAS | 15040259PubMed |

[83]  M. Salta, J. A. Wharton, Y. Blache, K. R. Stokes, J. F. Briand, Marine biofilms on artificial surfaces: structure and dynamics. Environ. Microbiol. 2013, 15, 2879.
| 23869714PubMed |

[84]  C. N. Ellis, C. C. Traverse, L. Mayo-Smith, S. W. Buskirk, V. S. Cooper, Character displacement and the evolution of niche complementarity in a model biofilm community. Evolution Int. J. Org. Evolution 2015, 69, 283.
Character displacement and the evolution of niche complementarity in a model biofilm community.Crossref | GoogleScholarGoogle Scholar |

[85]  J. Schluter, C. D. Nadell, B. L. Bassler, K. R. Foster, Adhesion as a weapon in microbial competition. ISME J. 2015, 9, 139.
Adhesion as a weapon in microbial competition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFKlsL%2FE&md5=c182a7c55a1e45bc7d5d7a1d6443cd17CAS | 25290505PubMed |

[86]  S. J. Sørensen, M. Bailey, L. H. Hansen, N. Kroer, S. Wuertz, Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 2005, 3, 700.
Studying plasmid horizontal transfer in situ: a critical review.Crossref | GoogleScholarGoogle Scholar | 16138098PubMed |

[87]  C. R. Jackson, P. F. Churchill, E. E. Roden, Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 2001, 82, 555.
Successional changes in bacterial assemblage structure during epilithic biofilm development.Crossref | GoogleScholarGoogle Scholar |

[88]  H. Y. Dang, C. R. Lovell, Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 2000, 66, 467.
Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFertbY%3D&md5=f666edabd34e1acdd37f70024d717cc8CAS |

[89]  H. Elifantz, G. Horn, M. Ayon, Y. Cohen, D. Minz, Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. 2013, 85, 348.
Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in eastern Mediterranean coastal seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ymsbnL&md5=894074b728fdc87187a36d12cf30fe72CAS | 23551015PubMed |

[90]  J.-W. Lee, J.-H. Nam, Y.-H. Kim, K.-H. Lee, D.-H. Lee, Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J. Microbiol. 2008, 46, 174.
Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovV2qsb4%3D&md5=f4e2a536f33e3b32788145d4b98387d1CAS | 18545967PubMed |

[91]  E. F. DeLong, D. G. Franks, A. L. Alldredge, Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages. Limnol. Oceanogr. 1993, 38, 924.
Phylogenetic diversity of aggregate-attached vs free-living marine bacterial assemblages.Crossref | GoogleScholarGoogle Scholar |

[92]  S. G. Acinas, J. Antón, F. Rodríguez-Valera, Diversity of free-living and attached bacteria in offshore western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microbiol. 1999, 65, 514.
| 1:CAS:528:DyaK1MXpvFCltA%3D%3D&md5=6e2bdabe16ac9d2df46827d2399fd144CAS | 9925576PubMed |

[93]  B. G. Crespo, T. Pommier, B. Fernández-Gómez, C. Pedrós-Alió, Taxonomic composition of the particle-attached and free-living bacterial assemblages in the north-west Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. MicrobiologyOpen 2013, 2, 541.
Taxonomic composition of the particle-attached and free-living bacterial assemblages in the north-west Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ylsrnF&md5=00586678de3a8bcc05085e7164173129CAS | 23723056PubMed |

[94]  J. F. Ghiglione, G. Mevel, M. Pujo-Pay, L. Mousseau, P. Lebaron, M. Goutx, Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microb. Ecol. 2007, 54, 217.
Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svpvVegsQ%3D%3D&md5=1fcf00a122a2e104648745c85d5aa204CAS | 17345139PubMed |

[95]  V. Mohit, P. Archambault, N. Toupoint, C. Lovejoy, Phylogenetic differences in attached and free-living bacterial communities in a temperate coastal lagoon during summer, revealed via high-throughput 16S rRNA gene sequencing. Appl. Environ. Microbiol. 2014, 80, 2071.
Phylogenetic differences in attached and free-living bacterial communities in a temperate coastal lagoon during summer, revealed via high-throughput 16S rRNA gene sequencing.Crossref | GoogleScholarGoogle Scholar | 24463966PubMed |

[96]  R. Bos, H. C. van der Mei, H. J. Busscher, Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol. Rev. 1999, 23, 179.
Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivF2isr8%3D&md5=443c62ef32d485b23db5781ccb51157dCAS | 10234844PubMed |

[97]  M. Fletcher, Bacterial attachment in aquatic environments: a diversity of surfaces and adhesion strategies, in Bacterial Adhesion: Molecular and Ecological Diversity 1996, pp. 1–24 (Wiley-Liss: New York).

[98]  A. Pompilio, R. Piccolomini, C. Picciani, D. D’Antonio, V. Savini, G. Di Bonaventura, Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell-surface hydrophobicity and motility. FEMS Microbiol. Lett. 2008, 287, 41.
Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell-surface hydrophobicity and motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOitrfI&md5=544e406147ba6fa8745daf39062d8449CAS | 18681866PubMed |

[99]  S. Borgeaud, L. C. Metzger, T. Scrignari, M. Blokesch, The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 2015, 347, 63.
The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFyltw%3D%3D&md5=edf006be1a004b09ef88bf862a9feb41CAS | 25554784PubMed |

[100]  O. O. Lee, Y. Wang, R. Tian, W. Zhang, C. S. Shek, S. Bougouffa, A. Al-Suwailem, Z. B. Batang, W. Xu, G. Chao Wang, X. Zhang, F. F. Lafi, V. B. Bajic, P.-Y. Qian, In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system. Sci. Rep. 2014, 4, 3587.
| 24399144PubMed |

[101]  V. Witt, C. Wild, S. Uthicke, Effect of substrate type on bacterial community composition in biofilms from the Great Barrier Reef. FEMS Microbiol. Lett. 2011, 323, 188.
Effect of substrate type on bacterial community composition in biofilms from the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyiurbJ&md5=6e8b8ec1061ed8b839ea7f0918f2a494CAS | 22092719PubMed |

[102]  T. Hoellein, M. Rojas, A. Pink, J. Gasior, J. Kelly, Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions. PLoS One 2014, 9, e98485.
Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions.Crossref | GoogleScholarGoogle Scholar | 24955768PubMed |

[103]  H. K. Webb, R. J. Crawford, T. Sawabe, E. P. Ivanova, Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes Environ. 2009, 24, 39.
Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation.Crossref | GoogleScholarGoogle Scholar | 21566352PubMed |

[104]  S. Oberbeckmann, M. G. J. Loeder, G. Gerdts, A. M. Osborn, Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol. Ecol. 2014, 90, 478.
| 1:CAS:528:DC%2BC2cXhvVCgt7bP&md5=c8972895edcbde5e811d2b869f879020CAS | 25109340PubMed |

[105]  H. Dang, T. Li, M. Chen, G. Huang, Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl. Environ. Microbiol. 2008, 74, 52.
Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVGlsQ%3D%3D&md5=0f121e345db1d10559237cc691f179c3CAS | 17965206PubMed |

[106]  D. Lobelle, M. Cunliffe, Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 2011, 62, 197.
Early microbial biofilm formation on marine plastic debris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSqsbg%3D&md5=62d54491530c037738811891dd06c3edCAS | 21093883PubMed |

[107]  J. F. Briand, I. Djeridi, D. Jamet, S. Coupe, C. Bressy, M. Molmeret, B. Le Berre, F. Rimet, A. Bouchez, Y. Blache, Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. Biofouling 2012, 28, 453.
Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xntlejtro%3D&md5=20c5f91240d7975e6ff93ff502434227CAS | 22582937PubMed |

[108]  T. Artham, M. Sudhakar, R. Venkatesan, C. M. Nair, K. V. G. K. Murty, M. Doble, Biofouling and stability of synthetic polymers in sea water. Int. Biodeterior. Biodegradation 2009, 63, 884.
Biofouling and stability of synthetic polymers in sea water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhtLjP&md5=7457261caf291014996b493b6447c391CAS |

[109]  J. P. Harrison, M. Schratzberger, M. Sapp, A. M. Osborn, Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 2014, 14, 232.
Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms.Crossref | GoogleScholarGoogle Scholar | 25245856PubMed |

[110]  A. McCormick, T. J. Hoellein, S. A. Mason, J. Schluep, J. J. Kelly, Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 2014, 48, 11863.
Microplastic is an abundant and distinct microbial habitat in an urban river.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFGlsrjL&md5=ee63405e95eefec83cf1456e8717c442CAS | 25230146PubMed |

[111]  E. J. Carpenter, K. L. Smith, Plastics on the Sargasso Sea surface. Science 1972, 175, 1240.
Plastics on the Sargasso Sea surface.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE387hvVaqsQ%3D%3D&md5=9d232b4421a4163cd798f076fbe3e0c6CAS | 5061243PubMed |

[112]  E. J. Carpenter, S. J. Anderson, G. R. Harvey, H. P. Miklas, B. B. Peck, Polystyrene spherules in coastal waters. Science 1972, 178, 749.
Polystyrene spherules in coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkslGjsQ%3D%3D&md5=c89e0dc0d37775628878a6476877a376CAS | 4628343PubMed |

[113]  H. S. Carson, M. S. Nerheim, K. A. Carroll, M. Eriksen, The plastic-associated microorganisms of the North Pacific gyre. Mar. Pollut. Bull. 2013, 75, 126.
The plastic-associated microorganisms of the North Pacific gyre.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlClu7zN&md5=c3cd14da34cb0b3f44101500c82904b4CAS | 23993070PubMed |

[114]  M. M. Lyons, J. E. Ward, H. Gaff, R. E. Hicks, J. M. Drake, F. C. Dobbs, Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens. Aquat. Microb. Ecol. 2010, 60, 1.
Theory of island biogeography on a microscopic scale: organic aggregates as islands for aquatic pathogens.Crossref | GoogleScholarGoogle Scholar |

[115]  K. Shapiro, C. Krusor, F. F. Mazzillo, P. A. Conrad, J. L. Largier, J. A. Mazet, M. W. Silver, Aquatic polymers can drive pathogen transmission in coastal ecosystems. Proc. Biol. Sci. 2014, 281, 20141287.
Aquatic polymers can drive pathogen transmission in coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 25297861PubMed |

[116]  H. W. Paerl, J. L. Pinckney, T. F. Steppe, Cyanobacterial–bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2000, 2, 11.
Cyanobacterial–bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3jtlylsg%3D%3D&md5=cb736f3d7fc552971b6541babcd2a599CAS | 11243256PubMed |

[117]  V. R. Lopes, V. M. Vasconcelos, Planktonic and benthic cyanobacteria of European brackish waters: a perspective on estuaries and brackish seas. Eur. J. Phycol. 2011, 46, 292.
Planktonic and benthic cyanobacteria of European brackish waters: a perspective on estuaries and brackish seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wmt7rJ&md5=1c002e3965707077415f467959414fc2CAS |

[118]  R. S. Quilliam, J. Jamieson, D. M. Oliver, Seaweeds and plastic debris can influence the survival of faecal indicator organisms in beach environments. Mar. Pollut. Bull. 2014, 84, 201.
Seaweeds and plastic debris can influence the survival of faecal indicator organisms in beach environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVKgsb4%3D&md5=8ca4ac0ce010f4af04e8d1493b785e64CAS | 24878304PubMed |

[119]  A. F. Takemura, D. M. Chien, M. F. Polz, Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 2014, 5, 38.
Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level.Crossref | GoogleScholarGoogle Scholar | 24575082PubMed |

[120]  C. Pruzzo, L. Vezzulli, R. R. Colwell, Global impact of Vibrio cholerae interactions with chitin. Environ. Microbiol. 2008, 10, 1400.
Global impact of Vibrio cholerae interactions with chitin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVWktbw%3D&md5=c3597f33f0445a7b59fcd11d94db2c97CAS | 18312392PubMed |

[121]  J. L. Romalde, A. L. Diéguez, A. Lasa, S. Balboa, New Vibrio species associated to molluscan microbiota: a review. Front. Microbiol. 2014, 4, 413.
New Vibrio species associated to molluscan microbiota: a review.Crossref | GoogleScholarGoogle Scholar | 24427157PubMed |

[122]  F. H. Yildiz, K. L. Visick, Vibrio biofilms: so much the same yet so different. Trends Microbiol. 2009, 17, 109.
Vibrio biofilms: so much the same yet so different.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVKjtrc%3D&md5=7d31c7b1909220d26940ee97e4deadd1CAS | 19231189PubMed |

[123]  M. Snoussi, E. Noumi, H. Hajlaoui, D. Usai, L. A. Sechi, S. Zanetti, A. Bakhrouf, High potential of adhesion to abiotic and biotic materials in fish aquaculture facility by Vibrio alginolyticus strains. J. Appl. Microbiol. 2009, 106, 1591.
High potential of adhesion to abiotic and biotic materials in fish aquaculture facility by Vibrio alginolyticus strains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVOis70%3D&md5=635a99455874586a1a9f1068e518c051CAS | 19245411PubMed |

[124]  S. Mintenig, I. Int-Veen, M. Löder, G. Gerdts, Mikroplastik in ausgewählten Kläranlagen des Oldenburgisch–Ostfriesischen Wasserverbandes (OOWV) in Niedersachsen – Probenanalyse mittels Mikro-FTIR Spektroskopie 2014. (Oldenburgisch-Ostfriesischer Wasserverband (OOWV) & Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Biologische Anstalt Helgoland, Germany). Available at http://www.oowv.de/uploads/media/Abschlussbericht_Mikroplastik_in_Klaeranlagen-3.pdf [Verified 6 August 2015].

[125]  H. A. Leslie, M. J. M. van Velzen, A. D. Vethaak, Microplastic Survey of the Dutch Environment – Novel Data Set of Microplastics in North Sea Sediments, Treated Wastewater Effluents and Marine Biota 2013 (Institute for Environmental Studies, VU University Amsterdam: Amsterdam). Available at http://www.ivm.vu.nl/en/Images/IVM%20report%20Microplastic%20in%20sediment%20STP%20Biota%202013_tcm53-409860.pdf [Verified 6 August 2015].

[126]  L. Cai, F. Ju, T. Zhang, Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl. Microbiol. Biotechnol. 2014, 98, 3317.
Tracking human sewage microbiome in a municipal wastewater treatment plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFeit7%2FE&md5=350d7e0c1ef76df6770093999b81fe05CAS | 24305737PubMed |

[127]  R. J. Newton, M. J. Bootsma, H. G. Morrison, M. L. Sogin, S. L. McLellan, A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microb. Ecol. 2013, 65, 1011.
A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan.Crossref | GoogleScholarGoogle Scholar | 23475306PubMed |

[128]  R. J. Newton, J. L. VandeWalle, M. A. Borchardt, M. H. Gorelick, S. L. McLellan, Lachnospiraceae and bacteroidales alternative fecal indicators reveal chronic human sewage contamination in an urban harbor. Appl. Environ. Microbiol. 2011, 77, 6972.
Lachnospiraceae and bacteroidales alternative fecal indicators reveal chronic human sewage contamination in an urban harbor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlClsLfI&md5=8854d8b94031f335fa9c114fa2e5eeeeCAS | 21803887PubMed |

[129]  J. Engberg, S. L. W. On, C. S. Harrington, P. Gerner-Smidt, Prevalence of Campylobacter, Arcobacter, Helicobacter, Andsutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for campylobacters. J. Clin. Microbiol. 2000, 38, 286.
| 1:STN:280:DC%2BD3c%2FosFWnuw%3D%3D&md5=a0e1145441f5609d300be387034354d6CAS | 10618103PubMed |

[130]  L. Van Cauwenberghe, M. Claessens, M. B. Vandegehuchte, C. R. Janssen, Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 2015, 199, 10.
Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlWgtLo%3D&md5=96bcf2da005d11f73794152ea8fbee31CAS | 25617854PubMed |

[131]  S. L. Wright, D. Rowe, R. C. Thompson, T. S. Galloway, Microplastic ingestion decreases energy reserves in marine worms. Curr. Biol. 2013, 23, R1031.
Microplastic ingestion decreases energy reserves in marine worms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOhu7fM&md5=e778a2df3cde65f5fbc9769ed95dc55fCAS | 24309274PubMed |

[132]  L. Cammen, Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 1979, 44, 303.
Ingestion rate: an empirical model for aquatic deposit feeders and detritivores.Crossref | GoogleScholarGoogle Scholar |

[133]  J. D. Kudenov, Rates of seasonal sediment reworking in Axiothella rubrocincta (Polychaeta: Maldanidae). Mar. Biol. 1982, 70, 181.
Rates of seasonal sediment reworking in Axiothella rubrocincta (Polychaeta: Maldanidae).Crossref | GoogleScholarGoogle Scholar |

[134]  H. U. Riisgård, I. Berntsen, B. Tarp, The lugworm (Arenicola marina) pump: characteristics, modelling and energy cost. Mar. Ecol. Prog. Ser. 1996, 138, 149.
The lugworm (Arenicola marina) pump: characteristics, modelling and energy cost.Crossref | GoogleScholarGoogle Scholar |

[135]  L. M. Mayer, L. L. Schick, R. F. L. Self, P. A. Jumars, R. H. Findlay, Z. Chen, S. Sampson, Digestive environments of benthic macroinvertebrate guts: enzymes, surfactants and dissolved organic matter. J. Mar. Res. 1997, 55, 785.
Digestive environments of benthic macroinvertebrate guts: enzymes, surfactants and dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFWru7s%3D&md5=a7210a5be9253693ad15ba4c474bec35CAS |

[136]  J. C. Smoot, L. M. Mayer, M. J. Bock, P. C. Wood, R. H. Findlay, Structures and concentrations of surfactants in gut fluid of the marine polychaete Arenicola marina. Mar. Ecol. Prog. Ser. 2003, 258, 161.
Structures and concentrations of surfactants in gut fluid of the marine polychaete Arenicola marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFyksLg%3D&md5=0b1d87aae955d829e5bb6192f992fa43CAS |

[137]  C. J. Plante, K. M. Coe, R. G. Plante, Isolation of surfactant-resistant bacteria from natural, surfactant-rich marine habitats. Appl. Environ. Microbiol. 2008, 74, 5093.
Isolation of surfactant-resistant bacteria from natural, surfactant-rich marine habitats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVehu7bO&md5=3df8ce858ddf4368ccb0548ce4716288CAS | 18586977PubMed |

[138]  C. J. Plante, A. G. Shriver, Patterns of differential digestion of bacteria in deposit feeders: a test of resource partitioning. Mar. Ecol. Prog. Ser. 1998, 163, 253.
Patterns of differential digestion of bacteria in deposit feeders: a test of resource partitioning.Crossref | GoogleScholarGoogle Scholar |

[139]  C. J. Plante, T. Busby, Influence of the facultative deposit feeder Mesochaetopterus taylori on microbial community structure of sediments. Bull. Mar. Sci. 2011, 87, 377.
Influence of the facultative deposit feeder Mesochaetopterus taylori on microbial community structure of sediments.Crossref | GoogleScholarGoogle Scholar |

[140]  C. J. Plante, S. B. Wilde, Bacterial recolonization of deposit-feeder egesta: in situ regrowth or immigration? Limnol. Oceanogr. 2001, 46, 1171.
Bacterial recolonization of deposit-feeder egesta: in situ regrowth or immigration?Crossref | GoogleScholarGoogle Scholar |

[141]  L. K. Sauchyn, R. E. Scheibling, Degradation of sea urchin feces in a rocky subtidal ecosystem: implications for nutrient cycling and energy flow. Aquat. Biol. 2009, 6, 99.
Degradation of sea urchin feces in a rocky subtidal ecosystem: implications for nutrient cycling and energy flow.Crossref | GoogleScholarGoogle Scholar |

[142]  W. Rungrassamee, A. Klanchui, S. Maibunkaew, S. Chaiyapechara, P. Jiravanichpaisal, N. Karoonuthaisiri, Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS One 2014, 9, e91853.
Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon).Crossref | GoogleScholarGoogle Scholar | 24618668PubMed |

[143]  J. M. Harris, The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb. Ecol. 1993, 25, 195.
The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7jtVWjsQ%3D%3D&md5=44d719f68658e4b6d26e297c0b20c0d7CAS | 24189919PubMed |

[144]  D. W. Laist, Overview of the biological effects of lost and discarded plastic debris in the marine environment. Mar. Pollut. Bull. 1987, 18, 319.
Overview of the biological effects of lost and discarded plastic debris in the marine environment.Crossref | GoogleScholarGoogle Scholar |

[145]  A. T. Pruter, Sources, quantities and distribution of persistent plastics in the marine environment. Mar. Pollut. Bull. 1987, 18, 305.
Sources, quantities and distribution of persistent plastics in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlvVaqs7w%3D&md5=224467a56ce2c1d8503323cdf4d5084eCAS |

[146]  J. G. B. Derraik, The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 2002, 44, 842.
The pollution of the marine environment by plastic debris: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVWns78%3D&md5=757914de79ed2efe1b2b0e3debf4df61CAS |

[147]  P. G. Ryan, C. J. Moore, J. A. van Franeker, C. L. Moloney, Monitoring the abundance of plastic debris in the marine environment. Philos. T. Roy. Soc. B 2009, 364, 1999.
Monitoring the abundance of plastic debris in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Skt70%3D&md5=b82cd325b1ccf0f6fd382aecc539530eCAS |

[148]  M. Cole, P. Lindeque, C. Halsband, T. S. Galloway, Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 2011, 62, 2588.
Microplastics as contaminants in the marine environment: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2gsrfM&md5=fcc64c8a0c712ffd04c42c522f208e69CAS | 22001295PubMed |

[149]  J. Oehlmann, U. Schulte-Oehlmann, W. Kloas, O. Jagnytsch, I. Lutz, K. O. Kusk, L. Wollenberger, E. M. Santos, G. C. Paull, K. J. W. Van Look, C. R. Tyler, A critical analysis of the biological impacts of plasticizers on wildlife. Philos. T. Roy. Soc. B 2009, 364, 2047.
A critical analysis of the biological impacts of plasticizers on wildlife.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Skt7s%3D&md5=9a821e50fc75551b22c7aa01d2db6492CAS |

[150]  E. L. Teuten, J. M. Saquing, D. R. Knappe, M. A. Barlaz, S. Jonsson, A. Björn, S. J. Rowland, R. C. Thompson, T. S. Galloway, R. Yamashita, D. Ochi, Y. Watanuki, C. Moore, P. Hung Viet, T. Seang Tana, M. Prudente, R. Boonyatumanond, M. P. Zakaria, K. Akkhavong, Y. Ogata, H. Hirai, S. Iwasa, K. Mizukawa, Y. Hagino, A. Imamura, M. Saha, H. Takada, Transport and release of chemicals from plastics to the environment and to wildlife. Philos. T. Roy. Soc. B 2009, 364, 2027.
Transport and release of chemicals from plastics to the environment and to wildlife.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Skt7o%3D&md5=b2a10b23de098527275cf3f0e38787cbCAS |

[151]  J. Hammer, M. H. S. Kraak, J. R. Parsons, Plastics in the marine environment: the dark side of a modern gift. Rev. Environ. Contam. Toxicol. 2012, 220, 1.
Plastics in the marine environment: the dark side of a modern gift.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlWqtLc%3D&md5=2ff0712dd5c70d7754fb07bb11d5e71bCAS | 22610295PubMed |

[152]  T. Rocha-Santos, A. C. Duarte, A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TRaC – Trend. Anal. Chem. 2015, 65, 47.
A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1Oqu7g%3D&md5=a26311c079bc44c9ca9d7b9688063aefCAS |

[153]  A. A. Shah, F. Hasan, J. I. Akhter, A. Hameed, S. Ahmed, Degradation of polyurethane by novel bacterial consortium isolated from soil. Ann. Microbiol. 2008, 58, 381.
Degradation of polyurethane by novel bacterial consortium isolated from soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ygs77N&md5=008c7cb2ab121561e23ff6f97bac0c96CAS |