Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Geochemical controls on aluminium concentrations in coastal waters

Brad M. Angel A B , Simon C. Apte A , Graeme E. Batley A and Lisa A. Golding A
+ Author Affiliations
- Author Affiliations

A CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia.

B Corresponding author. Email: brad.angel@csiro.au

Environmental Chemistry 13(1) 111-118 https://doi.org/10.1071/EN15029
Submitted: 11 February 2015  Accepted: 13 May 2015   Published: 15 September 2015

Environmental context. Aluminium may be released into coastal waters in dissolved and particulate forms from urban runoff, industrial discharges and acid sulfate soils. Aquatic organisms may experience toxic effects from exposure to dissolved and particulate aluminium. Therefore, the current study reports the geochemical controls such as speciation, precipitation and adsorption that influence the exposure to these aluminium forms in the field and the laboratory.

Abstract. A combination of field and laboratory investigations was conducted in order to gain an understanding of aluminium dynamics in coastal seawater environments. Filterable (<0.025 and <0.45 µm) aluminium concentrations in waters collected from an industrialised coastal location at Gladstone, Central Queensland, Australia ranged from 0.8 to 39.4 µg L–1. Size-based separation measurements made on field and laboratory-spiked coastal waters showed colloidal (>0.025 to <0.45 µm) aluminium species were generally minimal, apart from one field sample collected close to a river mouth where aluminium was associated with iron-containing colloids. In seawater (pH 8.15, 22 °C) spiked with small increments of aluminium so as not to attain supersaturation, the solubility limit was ~500 µg L–1. However, at higher total aluminium concentrations the solution chemistry became highly dynamic. In the presence of aluminium precipitate it was not possible to measure a solubility limit over the 28-day duration of the experiment because the dissolved aluminium concentration varied with both reaction time and precipitate concentration. For instance, when seawater solutions were spiked with 10 000 µg L–1 of total aluminium, a pulse of dissolved aluminium up to 1250 µg L–1 was sustained for several days before decreasing to below 100 µg L–1 after 28 days. The initial precipitate appeared to be solely aluminium hydroxide and transformed over time to contain increasing magnesium, consistent with the formation of hydrotalcite (Mg6Al2CO3(OH)16·4H2O), reaching 21 % of the precipitate mass after 28 days. Adsorption studies showed that at anticipated suspended particulate concentrations for coastal waters, natural particulate material has a fairly low affinity for dissolved aluminium. The results of the current study highlight the complex chemistry of aluminium in marine waters and the role of precipitation reactions.

Additional keywords: adsorption, precipitation, seawater, size-fractionation, solubility.


References

[1]  P. M. Bertsch, D. R. Parker, Aqueous polynuclear aluminium species, in The Environmental Chemistry of Aluminium, 2nd edn (Ed. G. Sposito) 1996, pp. 117–168. (Lewis Publishers: New York).

[2]  R. W. Gensemer, R. C. Playle, The bioavailability and toxicity of aluminum in aquatic environments. Crit. Rev. Environ. Sci. Technol. 1999, 29, 315.
The bioavailability and toxicity of aluminum in aquatic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVKju7g%3D&md5=4b93247c1e8c1b52abddb788cbfeec8eCAS |

[3]  D. J. Hydes, P. S. Liss, The behaviour of dissolved aluminium in estuarine and coastal waters. Estuar. Coast. Mar. Sci. 1977, 5, 755.
The behaviour of dissolved aluminium in estuarine and coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXmsFOlsw%3D%3D&md5=7822d2e109cfca88e20c555b4f3c03acCAS |

[4]  M. T. Brown, K. W. Bruland, Dissolved and particulate aluminium in the Columbia River and coastal waters of Oregon and Washington: behaviour in near-field and far-field plumes. Estuar. Coast. Shelf Sci. 2009, 84, 171.
Dissolved and particulate aluminium in the Columbia River and coastal waters of Oregon and Washington: behaviour in near-field and far-field plumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Oitrc%3D&md5=e7300ca301654ef6df677af712f2512aCAS |

[5]  M. T. Brown, S. M. Lippiatt, K. W. Bruland, Dissolved aluminum, particulate aluminum, and silicic acid in northern Gulf of Alaska coastal waters: glacial/riverine inputs and extreme reactivity. Mar. Chem. 2010, 122, 160.
Dissolved aluminum, particulate aluminum, and silicic acid in northern Gulf of Alaska coastal waters: glacial/riverine inputs and extreme reactivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWhtrbN&md5=c015585034972eac86340eec0d38010fCAS |

[6]  C. I. Measures, S. Vink, On the use of dissolved aluminum in surface waters to estimate dust deposition to the ocean. Global Biogeochem. Cycles 2000, 14, 317.
On the use of dissolved aluminum in surface waters to estimate dust deposition to the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGms78%3D&md5=5ba4a63861f15792fe0ef229d77b8a1cCAS |

[7]  S. Vink, C. I. Measures, The role of dust deposition in determining surface water distributions of Al and Fe in the South West Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 2787.
The role of dust deposition in determining surface water distributions of Al and Fe in the South West Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFWgsL0%3D&md5=76e3d653f9e3f3a16813e387b877cc15CAS |

[8]  A. J. Harford, A. C. Hogan, J. J. Tsang, D. L. Parry, A. P. Negri, M. S. Adams, J. L. Stauber, R. A. van Dam, Effects of alumina refinery wastewater and signature metal constituents at the upper thermal tolerance of: 1. The tropical diatom Nitzschia closterium. Mar. Pollut. Bull. 2011, 62, 466.
Effects of alumina refinery wastewater and signature metal constituents at the upper thermal tolerance of: 1. The tropical diatom Nitzschia closterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVyks7w%3D&md5=80e1d6352336a06e3b407f57f2d0268fCAS | 21310438PubMed |

[9]  B. Powell, M. Martens, A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Mar. Pollut. Bull. 2005, 51, 149.
A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2gtL0%3D&md5=e1d1c0c3371d2752d88744fb6b6f5f21CAS | 15757717PubMed |

[10]  F. J. Millero, R. Woosley, B. Ditrolio, J. Waters, Effect of ocean acidification on the speciation of metals in seawater. Oceanography. 2009, 22, 72.
Effect of ocean acidification on the speciation of metals in seawater.Crossref | GoogleScholarGoogle Scholar |

[11]  S. B. Moran, R. M. Moore, The distribution of colloidal aluminium and organic carbon in coastal and open ocean waters off Nova Scotia. Geochim. Cosmochim. Acta 1989, 53, 2519.
The distribution of colloidal aluminium and organic carbon in coastal and open ocean waters off Nova Scotia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXisFWqtA%3D%3D&md5=1641f640f203b880cc850436c54f84dcCAS |

[12]  L. A. Golding, B. M. Angel, G. E. Batley, S. C. Apte, R. Krassoi, C. J. Doyle, Derivation of a water quality guideline for aluminium in marine waters. Environ. Toxicol. Chem. 2015, 34, 141.
Derivation of a water quality guideline for aluminium in marine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFaqtLfM&md5=2b18097fc4184bc49e3b1301cb2d5adfCAS | 25318392PubMed |

[13]  C. Arango, M. Holmes, M. St J. Warne, J. Playford, J. Ferris, D. Renouf, S. Vardy, C. Williams, Post-flood water quality monitoring in Gladstone Harbour and waterways – January 2013: data report, sampling 31 January–1 February 2013. Department of Science, Information Technology, Innovation and the Arts, data report 2013 (Queensland Government: Brisbane, Qld, Australia). Available at http://www.ehp.qld.gov.au/gladstone/pdf/monitoring-report-post-flood-jan2013.pdf [Verified 15 July 2015].

[14]  B. M. Angel, C. V. Jarolimek, J. J. King, L. T. Hales, S. L. Simpson, R. F. Jung, S. C. Apte, Metals in the waters and sediments of Port Curtis, Queensland. CSIRO Wealth from Oceans Flagship Technical Report 2012 (CSIRO: Canberra, ACT).

[15]  J. K. Edzwald, J. Haarhoff, Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation. Water Res. 2011, 45, 5428.
Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WltL3M&md5=2df4e6cc6c76e98db333eae6dbe8587eCAS | 21907384PubMed |

[16]  J. D. Willey, Reactions which remove dissolved alumina from seawater. Mar. Chem. 1975, 3, 227.
Reactions which remove dissolved alumina from seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktFSisL4%3D&md5=ee201b19ee464b60678497a14e868753CAS |

[17]  A. V. Savenko, V. S. Savenko, Aluminium hydroxide’s solubility and the forms of dissolved aluminium’s occurrence in seawater. Oceanology (Mosc.) 2011, 51, 231.
Aluminium hydroxide’s solubility and the forms of dissolved aluminium’s occurrence in seawater.Crossref | GoogleScholarGoogle Scholar |

[18]  S. M. Petrich, D. J. Reish, Effects of aluminium and nickel on survival and reproduction in polychaetous annelids. Bull. Environ. Contam. Toxicol. 1979, 23, 698.
Effects of aluminium and nickel on survival and reproduction in polychaetous annelids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXht1Or&md5=1a2b502e83467a2d371fe9a046bf6f1dCAS | 497483PubMed |

[19]  B. M. Angel, L. T. Hales, S. L. Simpson, S. C. Apte, A. A. Chariton, D. A. Shearer, D. F. Jolley, Spatial variability of cadmium, copper, manganese, nickel and zinc in the Port Curtis Estuary, Queensland, Australia. Mar. Freshwater Res. 2010a, 61, 170.
Spatial variability of cadmium, copper, manganese, nickel and zinc in the Port Curtis Estuary, Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVahu7k%3D&md5=f3624325fb32455c7e1054f8b23b966bCAS |

[20]  B. M. Angel, G. E. Batley, C. V. Jarolimek, N. J. Rogers, The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Chemosphere 2013, 93, 359.
The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12rtrw%3D&md5=8778f9d6ad2fb8fdafd2e1ca2c069b6fCAS | 23732009PubMed |

[21]  A. Dammshäuser, P. L. Croot, Low colloidal associations of aluminium and titanium in surface waters of the tropical Atlantic. Geochim. Cosmochim. Acta 2012, 96, 304.
Low colloidal associations of aluminium and titanium in surface waters of the tropical Atlantic.Crossref | GoogleScholarGoogle Scholar |

[22]  B. M. Angel, S. L. Simpson, D. F. Jolley, Toxicity to Melita plumulosa from intermittent and continuous exposures to dissolved copper. Environ. Toxicol. Chem. 2010b, 29, 2823.
Toxicity to Melita plumulosa from intermittent and continuous exposures to dissolved copper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFags7rO&md5=0e2aac625e4004275d1989398c8f6d13CAS | 20836070PubMed |

[23]  B. M. Angel, S. L. Simpson, A. A. Chariton, J. L. Stauber, D. F. Jolley, Time-averaged copper concentrations from continuous exposures predicts pulsed exposure toxicity to the marine diatom, Phaeodactylum tricornutum: importance of uptake and elimination. Aquat. Toxicol. 2015, 164, 1.
Time-averaged copper concentrations from continuous exposures predicts pulsed exposure toxicity to the marine diatom, Phaeodactylum tricornutum: importance of uptake and elimination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmt1Smtbw%3D&md5=afbf8721348e6b5950a371bfb0bf81a3CAS | 25911575PubMed |

[24]  R. W. Smith, J. D. Hem, Effect of aging on aluminum hydroxide complexes in dilute aqueous solutions. US Geological Survey, Water Supply Paper 1827 D 1972 (Washington, DC).

[25]  W. L. Lindsay, P. M. Walthal, The solubility of aluminium in soils, in The Environmental Chemistry of Aluminium, 2nd edn (Ed. G. Sposito) 1996, pp. 333–361 (Lewis Publishers: New York).

[26]  R. Vandelannoote, L. Van’t Dack, R. Van Grieken, Effects of alkaline alumínate waste dumping on seawater chemistry. Mar. Environ. Res. 1987, 21, 275.
Effects of alkaline alumínate waste dumping on seawater chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltVahsbk%3D&md5=93cb68c4f308c4897d1e0835c36c40b8CAS |

[27]  I. T. Burke, C. L. Peacock, C. L. Lockwood, D. I. Stewart, R. J. G. Mortimer, M. B. Ward, P. Renforth, K. Gruiz, W. M. Mayes, Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. Environ. Sci. Technol. 2013, 47, 6527.
| 1:CAS:528:DC%2BC3sXnvVWms7s%3D&md5=7e01e07bdac8143ddd9ef2ea2a2b27baCAS | 23683000PubMed |

[28]  P. W. Balls, The partition of trace metals between dissolved and particulate phases in European coastal waters: a compilation of field data and comparison with laboratory studies. Neth. J. Sea Res. 1989, 23, 7.
The partition of trace metals between dissolved and particulate phases in European coastal waters: a compilation of field data and comparison with laboratory studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFyksro%3D&md5=b4349aa430584a9fb1b1ee76d4e83ebcCAS |

[29]  K. Takayanagi, C. Gobeil, Dissolved aluminium in the Upper St Lawrence Estuary. J. Oceanogr. 2000, 56, 517.
Dissolved aluminium in the Upper St Lawrence Estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntVCqtLY%3D&md5=6529a1299606a6424ad8c6c7b360474eCAS |

[30]  A. J. van Bennekom, J. E. Jager, Dissolved aluminium in the Zaire River plume. Neth. J. Sea Res. 1978, 12, 358.
Dissolved aluminium in the Zaire River plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmsVerug%3D%3D&md5=b878faf4e969da0e38071712941aed35CAS |

[31]  V. G. Caccia, F. J. Millero, The distribution and seasonal variation of dissolved trace metals in Florida Bay and adjacent waters. Aquat. Geochem. 2003, 9, 111.
The distribution and seasonal variation of dissolved trace metals in Florida Bay and adjacent waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvF2lsrk%3D&md5=2623377dabf75ed18023341e64ffd530CAS |

[32]  S. Upadhyay, Sorption model for dissolved and leachable particulate aluminium in the Great Ouse Estuary, England. Aquat. Geochem. 2012, 18, 243.
Sorption model for dissolved and leachable particulate aluminium in the Great Ouse Estuary, England.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1ymurk%3D&md5=96f16ca91d5a9429064edf030854004dCAS |

[33]  S. Upadhyay, Sorption model for dissolved and particulate aluminium in the Conway estuary, UK. Estuar. Coast. Shelf Sci. 2008, 76, 914.
Sorption model for dissolved and particulate aluminium in the Conway estuary, UK.Crossref | GoogleScholarGoogle Scholar |

[34]  J. Kramer, P. Laan, G. Sarthou, K. R. Timmermans, H. J. W. de Baar, Distribution of dissolved aluminium in the high atmospheric input region of the subtropical waters of the North Atlantic Ocean. Mar. Chem. 2004, 88, 85.
Distribution of dissolved aluminium in the high atmospheric input region of the subtropical waters of the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFKgsbo%3D&md5=ff84044ec9d04d61c667b2714c574d84CAS |

[35]  K. J. Orians, K. W. Bruland, The biogeochemistry of aluminium in the Pacific Ocean. Earth Planet. Sci. Lett. 1986, 78, 397.
The biogeochemistry of aluminium in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvVCksrw%3D&md5=90ecf8d5a52660bb15adaa6697ceaf6cCAS |

[36]  R. M. Moore, Oceanographic distributions of zinc, cadmium, copper and aluminium in waters of the central Arctic. Geochim. Cosmochim. Acta 1981, 45, 2475.
Oceanographic distributions of zinc, cadmium, copper and aluminium in waters of the central Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xhs1yhsbY%3D&md5=c3bb2e2f3812fa4492f5b9e7df86c506CAS |

[37]  C. I. Measures, S. Vink, Seasonal variations in the distribution of Fe and Al in the surface waters of the Arabian Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 1597.
Seasonal variations in the distribution of Fe and Al in the surface waters of the Arabian Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFGntLs%3D&md5=d883fa2907fd99c46535191b05f99ff1CAS |