Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Effect of fluctuating oxygen concentration on iron oxidation at the pelagic ferrocline of a meromictic lake

Jenny Bravidor A C , Julika Kreling B , Andreas Lorke B and Matthias Koschorreck A
+ Author Affiliations
- Author Affiliations

A UFZ – Helmholtz Centre for Environmental Research, Department of Lake Research, Brückstraße 3a, D-39114 Magdeburg, Germany.

B University of Koblenz–Landau, Institute for Environmental Sciences, Fortstraße 7, D-76829 Landau, Germany.

C Corresponding author. Email: jenny.bravidor@ufz.de

Environmental Chemistry 12(6) 723-730 https://doi.org/10.1071/EN14215
Submitted: 6 October 2014  Accepted: 8 February 2015   Published: 20 May 2015

Environmental context. The cycling of iron plays an important role in pelagic boundary zones such as the oxic–anoxic interface where physical and chemical gradients occur. The turnover of iron in this zone depends on oxygen fluctuation and the duration of the fluctuation event. This study increases the understanding of biogeochemical iron transformation in such hotspots.

Abstract. In stratified iron-rich lakes, the interface between oxic and anoxic water bodies, the oxycline, is accompanied by a steep gradient of dissolved iron, the ferrocline. It is a hotspot of biogeochemical transformations, namely the cycling of iron (Fe). The rate of iron oxidation, both chemical and microbial, depends on pH, iron and oxygen concentration, and microbial activity. We investigated the ferrocline of the meromictic Lake Waldsee to find out how the ferrocline is influenced by fluctuating oxygen concentrations. We measured diurnal fluctuations of Fe2+, O2 and pH along vertical profiles during two campaigns in July and September 2011 as well as rates of iron oxidation in laboratory incubations. The oxygen content of the water column varied both between the campaigns and diurnally. We observed a diurnal intrusion of O2 into the ferrocline. The diurnal signal was visible in the iron profile in July but not in September. Iron oxidation rates determined in the laboratory demonstrate the importance of microbial iron reduction and the strong pH dependency. We related the reaction timescales for iron oxidation to the characteristic timescale of oxygen fluctuations by calculating non-dimensional numbers. This analysis showed that an oxygenation event had to last at least 10 h in order to affect the depth and vertical extent of the ferrocline, which was the case in July but not in September. Our results show that the duration of events can be an important parameter regulating biogeochemical interactions in pelagic redoxclines.

Additional keywords: ferrous iron, ferrous oxidation, oxycline, pelagic water.


References

[1]  M. E. McClain, E. W. Boyer, C. L. Dent, S. E. Gergel, N. B. Grimm, P. M. Groffman, S. C. Hart, J. W. Harvey, C. A. Johnston, E. Mayorga, W. H. McDowell, G. Pinay, Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 2003, 6, 301.
Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks12rur4%3D&md5=a0a5ff4be17c8281b4b83077eccb4e15CAS |

[2]  W. Davison, Iron and manganese in lakes. Earth Sci. Rev. 1993, 34, 119.
Iron and manganese in lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsFKjsb0%3D&md5=95a1d8f7673240da4f61d7930017dcb8CAS |

[3]  M. Reiche, S. Lu, V. Ciobota, T. R. Neu, S. Nietzsche, P. Rösch, J. Popp, K. Küsel, Pelagic boundary conditions affect the biological formation of iron-rich particles (iron snow) and their microbial communities. Limnol. Oceanogr. 2011, 56, 1386.
Pelagic boundary conditions affect the biological formation of iron-rich particles (iron snow) and their microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCrurrK&md5=72bad5ad71d5aa44eadb376d051775a4CAS |

[4]  O. Dellwig, T. Leipe, C. Marz, M. Glockzin, F. Pollehne, B. Schnetger, E. V. Yakushev, M. E. Bottcher, H. J. Brumsack, A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochim. Cosmochim. Acta 2010, 74, 7100.
A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCmsLrF&md5=fa093ff62936b8be35c82359ca3dbd8bCAS |

[5]  J. Overmann, Mahoney Lake: a case study of the ecological significance of phototrophic sulfur bacteria, in Advances in Microbial Ecology (Ed. G. Jones) 1997, pp. 251–288 (Plenum Press: New York).

[6]  V. M. Dekov, J. C. Scholten, R. Botz, C. D. Garbe-Schonberg, P. Stoffers, Fe-Mn-(hydr)oxide-carbonate crusts from the Kebrit Deep, Red Sea: precipitation at the seawater/brine redoxcline. Mar. Geol. 2007, 236, 95.
Fe-Mn-(hydr)oxide-carbonate crusts from the Kebrit Deep, Red Sea: precipitation at the seawater/brine redoxcline.Crossref | GoogleScholarGoogle Scholar |

[7]  B. Boehrer, M. Schultze, Stratification of lakes. Rev. Geophys. 2008, 46, RG2005.
Stratification of lakes.Crossref | GoogleScholarGoogle Scholar |

[8]  E. O. Casamayor, J. Garcia-Cantizano, C. Pedros-Alio, Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide-rich stratified lakes with oxic–anoxic interfaces. Limnol. Oceanogr. 2008, 53, 1193.
Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide-rich stratified lakes with oxic–anoxic interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVyqsrw%3D&md5=53b224265f84134a9ac1013d521e5ec4CAS |

[9]  B. Boehrer, M. Schultze, On the relevance of meromixis in mine pit lakes, in Proceedings of the 7th International Conference on Acid Rock Drainage (ICARD), 27–29 March 2006, St Louis, MO, USA (Ed. R. I. Barnhisel) 2006, pp. 200–213 (American Society of Mining and Reclamation: Lexington, VA).

[10]  C. H. Mortimer, The exchange of dissolved substances between mud and water in lakes (I). J. Ecol. 1941, 29, 280.
The exchange of dissolved substances between mud and water in lakes (I).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2cXjtVKjtg%3D%3D&md5=7de02d4bf43639e75730375c702de652CAS |

[11]  C. H. Mortimer, The exchange of dissolved substances between mud and water in lakes (II). J. Ecol. 1942, 30, 147.
The exchange of dissolved substances between mud and water in lakes (II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH2cXjtVKjtw%3D%3D&md5=5738211e4617a0a81ed2345ff519c39dCAS |

[12]  W. Stumm, G. F. Lee, Oxygenation of ferrous iron. Ind. Eng. Chem. 1961, 53, 143.
Oxygenation of ferrous iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXnslymsQ%3D%3D&md5=67307e4e191305687da8e26aaf953717CAS |

[13]  S. Hedrich, M. Schlömann, D. B. Johnson, The iron-oxidizing proteobacteria. Microbiology 2011, 157, 1551.
The iron-oxidizing proteobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVSlsLo%3D&md5=7eb9a0b7aa2806ddefda6e46bf633b2dCAS | 21511765PubMed |

[14]  L. Emmenegger, R. R. Schonenberger, L. Sigg, B. Sulzberger, Light-induced redox cycling of iron in circumneutral lakes. Limnol. Oceanogr. 2001, 46, 49.
Light-induced redox cycling of iron in circumneutral lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFKjtrY%3D&md5=3c31d44fdc4af7d75d2eb32460871365CAS |

[15]  P. C. Singer, W. Stumm, Kinetics of the oxidation of ferrous iron, in Second Symposium Coal Mine Drainage Research, 14–15 May 1968, Pittsburgh, PA, USA 1968, pp. 12–34 (Mellon Institute: Pittsburgh, PA).

[16]  C. S. Kirby, H. M. Thomas, G. Southam, R. Donald, Relative contributions of abiotic and biological factors in FeII oxidation in mine drainage. Appl. Geochem. 1999, 14, 511.
Relative contributions of abiotic and biological factors in FeII oxidation in mine drainage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSnt7s%3D&md5=dcf2fbd0d54a878d6d5d10d64d44a240CAS |

[17]  C. S. Kirby, J. A. E. Brady, Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously stirred tank reactor. Appl. Geochem. 1998, 13, 509.
Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously stirred tank reactor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlKls7Y%3D&md5=a62409a9cbb175237cb314b212bb57c7CAS |

[18]  N. Wakao, K. Hanada, Y. Sakurai, H. Shiota, Seasonal variations in number of acidophilic iron-oxidizing bacteria and iron oxidation in the river contaminated with acid mine water. Soil Sci. Plant Nutr. 1978, 24, 491.
Seasonal variations in number of acidophilic iron-oxidizing bacteria and iron oxidation in the river contaminated with acid mine water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXkt1Kqtbk%3D&md5=7cff502c42495da9eb8414c77c183c13CAS |

[19]  S. Vollrath, T. Behrends, P. Van Cappellen, Oxygen dependency of neutrophilic FeII oxidation by Leptothrix differs from abiotic reaction. Geomicrobiol. J. 2012, 29, 550.
Oxygen dependency of neutrophilic FeII oxidation by Leptothrix differs from abiotic reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlCqurc%3D&md5=dcc6caed29dc64b40a3e283312ff2b85CAS |

[20]  L. Y. Liang, J. A. Mcnabb, J. M. Paulk, B. H. Gu, J. F. Mccarthy, Kinetics of FeII oxygenation at low partial-pressure of oxygen in the presence of natural organic matter. Environ. Sci. Technol. 1993, 27, 1864.
Kinetics of FeII oxygenation at low partial-pressure of oxygen in the presence of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVaksb4%3D&md5=7e4a49cf47afa5b8c46c86dcc48fe66aCAS |

[21]  G. K. Druschel, D. Emerson, R. Sutka, P. Suchecki, G. W. Luther, Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim. Cosmochim. Acta 2008, 72, 3358.
Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFars7w%3D&md5=171780d5b61f48e4d1a640935699527eCAS |

[22]  C. Oldham, J. Imberger, Oxygen patchiness in a lake. Aquat. Sci. 1995, 57, 325.
Oxygen patchiness in a lake.Crossref | GoogleScholarGoogle Scholar |

[23]  P. A. Staehr, D. Bade, M. C. Van De Bogert, G. R. Koch, C. Williamson, P. Hanson, J. J. Cole, T. Kratz, Lake metabolism and the diel oxygen technique: state of the science. Limnol. Oceanogr. Methods 2010, 8, 628.
Lake metabolism and the diel oxygen technique: state of the science.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Wmt7k%3D&md5=84231c21fcc030ffa434779f35498bfbCAS |

[24]  C. J. Ocampo, C. E. Oldham, M. Sivapalan, Nitrate attenuation in agricultural catchments: shifting balances between transport and reaction. Water Resour. Res. 2006, 42, W01408.
Nitrate attenuation in agricultural catchments: shifting balances between transport and reaction.Crossref | GoogleScholarGoogle Scholar |

[25]  W. Kurtz, S. Peiffer, The role of transport in aquatic redox chemistry, in Aquatic Redox Chemistry (Eds P. G. Tratnyek, T. J. Grundl, S. B. Haderlein) 2011, pp. 559–580 (American Chemical Society: Washington, DC).

[26]  C. E. Oldham, D. E. Farrow, S. Peiffer, A generalized Damköhler number for classifying material processing in hydrological systems. Hydrol. Earth Syst. Sci. 2013, 17, 1133.
A generalized Damköhler number for classifying material processing in hydrological systems.Crossref | GoogleScholarGoogle Scholar |

[27]  A. Seebach, S. Dietz, D. Lessmann, K. Knoeller, Estimation of lake water–groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water. Isotopes Environ. Health Stud. 2008, 44, 99.
Estimation of lake water–groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVehsbY%3D&md5=ca2a7c99c3473ad6f27a7ce6fdb23d6bCAS | 18320431PubMed |

[28]  C. von Rohden, J. Ilmberger, B. Boehrer, Assessing groundwater coupling and vertical exchange in a meromictic mining lake with an SF6-tracer experiment. J. Hydrol. 2009, 372, 102.
Assessing groundwater coupling and vertical exchange in a meromictic mining lake with an SF6-tracer experiment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVOksLc%3D&md5=b8e21acc660887c398fe287d37d113fcCAS |

[29]  S. Moreira, B. Boehrer, M. Schultze, S. Dietz, J. Samper, Modeling geochemically caused permanent stratification in Lake Waldsee (Germany). Aquat. Geochem. 2011, 17, 265.
Modeling geochemically caused permanent stratification in Lake Waldsee (Germany).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVams7w%3D&md5=c734b31eb391b348648ad9792c604d30CAS |

[30]  D. E. Canfield, B. Thamdrup, Towards a consistent classification scheme for geochemical environments, or why we wish the term ‘suboxic’ would go away. Geobiology 2009, 7, 385.
Towards a consistent classification scheme for geochemical environments, or why we wish the term ‘suboxic’ would go away.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKnu7fN&md5=3761fabfb283fb9259db22556177d9d8CAS | 19702823PubMed |

[31]  S. Peiffer, S. Frei, Effective denitrification at the groundwater surface–water interface: exposure rather than residence time. Geophys. Res. Abstr. 2014, 16, EGU2014-10263.

[32]  D. M. Imboden, R. P. Schwarzenbach, Spatial and temporal distribution of chemical substances in lakes: modeling concepts, in Chemical Processes in Lakes (Ed. W. Stumm) 1985, pp. 1–30 (Wiley: New York).

[33]  D. Y. Rogozin, A. G. Degermendzhi, Hydraulically operated thin-layer sampler for sampling heterogeneous water columns. J. Sib. FU 2008, 2, 111.

[34]  B. Boehrer, S. Dietz, C. Von Rohden, U. Kiwel, K. D. Johnk, S. Naujoks, J. Ilmberger, D. Lessmann, Double-diffusive deep water circulation in an iron-meromictic lake. Geochem. Geophys. Geosyst. 2009, 10, Q06006.
Double-diffusive deep water circulation in an iron-meromictic lake.Crossref | GoogleScholarGoogle Scholar |

[35]  P. S. Braterman, A. G. Cairns-Smith, R. W. Sloper, T. G. Truscott, M. Craw, Photo-oxidation of iron(II) in water between pH 7.5 and 4.0. J. Chem. Soc., Dalton Trans. 1984, 1441.
Photo-oxidation of iron(II) in water between pH 7.5 and 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlsVSqs7s%3D&md5=3960645829062175e44fedb0b61bf54dCAS |

[36]  T. Kasama, T. Murakami, The effect of microorganisms on Fe precipitation rates at neutral pH. Chem. Geol. 2001, 180, 117.
The effect of microorganisms on Fe precipitation rates at neutral pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVens7k%3D&md5=cbe8a693db3e8b17ee634268a64753efCAS |

[37]  C. von Rohden, B. Boehrer, J. Ilmberger, Evidence for double diffusion in temperate meromictic lakes. Hydrol. Earth Syst. Sci. 2010, 14, 667.
Evidence for double diffusion in temperate meromictic lakes.Crossref | GoogleScholarGoogle Scholar |

[38]  F. J. Millero, S. Sotolongo, M. Izaguirre, The oxidation kinetics of FeII in seawater. Geochim. Cosmochim. Acta 1987, 51, 793.
The oxidation kinetics of FeII in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitF2hs7o%3D&md5=3cc52c0f44722ac328de133cdaf533d0CAS |

[39]  L. L. Stookey, Ferrozine – a new spectrophotometric reagent for iron. Anal. Chem. 1970, 42, 779.
Ferrozine – a new spectrophotometric reagent for iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkt1WjtL8%3D&md5=3fac3bbeb5dcd351cb7c4a31fcec0ca7CAS |