Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Thermolytic degradation of methylmethionine and implications for its role in DMS and MeCl formation in hypersaline environments

Ines Mulder A D , Torsten Krause A , Tobias Sattler A , Christoph Tubbesing A , Sabine Studenroth A , Krzysztof Bukowski B , Elliot Atlas C and Heinz F. Schöler A
+ Author Affiliations
- Author Affiliations

A Institute of Earth Sciences, University of Heidelberg, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany.

B Faculty of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, Mickiewicza 30, PL-30059, Cracow, Poland.

C Rosenstiel School of Marine and Atmospheric Chemistry, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.

D Corresponding author. Email: ines.mulder@geow.uni-heidelberg.de

Environmental Chemistry 12(4) 415-425 https://doi.org/10.1071/EN14207
Submitted: 30 September 2014  Accepted: 13 March 2015   Published: 29 June 2015

Environmental context. Methyl chloride and dimethyl sulfide are important atmospheric trace gases, but their biogeochemical contributions to the atmosphere are not fully understood. The amino acid derivative methyl methionine has been hypothesised to be a precursor of these two atmospheric gases, especially in drying salt-lake environments. We found methyl chloride and dimethyl sulfide in salt crystals and soil samples of hypersaline lakes, suggesting that a thermal decay of methyl methionine could be one of the formation mechanisms responsible.

Abstract. Volatile organic halocarbons (VOXs) and volatile organosulfur compounds (VOSCs) play an important role in the chemical processes of the lower atmosphere. However, biogeochemical release mechanisms from terrestrial environments are complex and the current knowledge of the origin and fluxes of these compounds is incomplete. This study presents data from worldwide sampling campaigns to hypersaline salt lakes to investigate terrestrial sources for atmospheric VOXs and VOSCs. The hypothesis was tested if methionine or methylmethionine could potentially serve as a precursor for methyl chloride and dimethyl sulfide formation in salt-lake environments. Next to methyl chloride, emissions from hypersaline soil samples incubated in headspace vials showed an array of VOSCs including dimethylsulfide and dimethyldisulfide. Additionally, methyl chloride and dimethyl sulfide were released from fluid inclusions of halite crystals after grinding and purge-and-trap headspace gas chromatography–mass spectrometry analysis. An abiotic mechanism for their formation is conceivable owing to the fast response of emission on heating freeze-dried samples at 40 °C. Furthermore, the compounds trapped in fluid inclusions of halite crystals correspond to those compounds originally formed in the immediately subjacent soils. Based on the thermolytic degradation of methylmethionine, the activation energies for methyl chloride and dimethyl sulfide are calculated from their Arrhenius plots. Additionally, structurally related substances were analysed and a degradation mechanism is postulated. Results indicate that thermolytic processes could play an important role in salt-lake environments on desiccation.

Additional keywords: abiotic production, Arrhenius plots, dimethyldisulfide, halites, thermolysis.


References

[1]  J. Harnisch, A. Eisenhauer, Natural CF4 and SF6 on Earth. Geophys. Res. Lett. 1998, 25, 2401.
Natural CF4 and SF6 on Earth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1ajtb0%3D&md5=5d125f26e98b19982c4f79210683c278CAS |

[2]  H. Svensen, S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, B. Jamtveit, Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 2009, 277, 490.
Siberian gas venting and the end-Permian environmental crisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntV2qsg%3D%3D&md5=4a2d3d9520c99636db3cf8ec81a38d6eCAS |

[3]  I. Mulder, S. G. Huber, T. Krause, C. Zetzsch, K. Kotte, S. Dultz, H. F. Schöler, A new purge-and-trap headspace technique to analyze low volatile compounds from fluid inclusions of rocks and minerals. Chem. Geol. 2013, 358, 148.
A new purge-and-trap headspace technique to analyze low volatile compounds from fluid inclusions of rocks and minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWqtLbO&md5=aace1aa63529bd372e80bb95144eec0bCAS |

[4]  F. Keppler, D. B. Harper, T. Röckmann, R. M. Moore, J. T. G. Hamilton, New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmos. Chem. Phys. 2005, 5, 2403.
New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgs7rM&md5=69b9b7a8984e8a5964cd3a15e1365070CAS |

[5]  S. A. Montzka, J. H. Butler, B. D. Hall, D. J. Mondeel, J. W. Elkins, A decline in tropospheric organic bromine. Geophys. Res. Lett. 2003, 30, 1826.
A decline in tropospheric organic bromine.Crossref | GoogleScholarGoogle Scholar |

[6]  R. C. Rhew, B. R. Miller, R. F. Weiss, Natural methyl bromide and methyl chloride emissions from coastal salt marshes. Nature 2000, 403, 292.
Natural methyl bromide and methyl chloride emissions from coastal salt marshes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Chsg%3D%3D&md5=71a507101c661b0ddf5b379fb1d47bf0CAS | 10659844PubMed |

[7]  F. Keppler, J. T. G. Hamilton, Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol. 2008, 178, 808.
Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFKqtbc%3D&md5=623474ff0718d5b7fdb176a3024e31c0CAS | 18346110PubMed |

[8]  S. Kloster, J. Feichter, E. Maier-Reimer, K. D. Six, P. Stier, P. Wetzel, DMS cycle in the marine ocean–atmosphere system – a global model study. Biogeosciences 2006, 3, 29.
DMS cycle in the marine ocean–atmosphere system – a global model study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVOltr8%3D&md5=c797a8c1368e998a51690baa82f8aaa0CAS |

[9]  G. A. Nevitt, The neuroecology of dimethyl sulfide: a global-climate regulator turned marine infochemical. Integr. Comp. Biol. 2011, 51, 819.
| 1:CAS:528:DC%2BC3MXhtlGku7bM&md5=f8364a7641bd163957083d02e5aabc8dCAS | 21880692PubMed |

[10]  H. Schäfer, N. Myronova, R. Boden, Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 2010, 61, 315.
Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere.Crossref | GoogleScholarGoogle Scholar | 20007683PubMed |

[11]  S. Sievert, R. Kiene, H. Schulz-Vogt, The sulfur cycle. Oceanography 2007, 20, 117.
The sulfur cycle.Crossref | GoogleScholarGoogle Scholar |

[12]  A. S. Kinsela, J. K. Reynolds, M. D. Melville, Agricultural acid sulfate soils: a potential source of volatile sulfur compounds? Environ. Chem. 2007, 4, 18.
Agricultural acid sulfate soils: a potential source of volatile sulfur compounds?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1yqsrY%3D&md5=189bf52f34eb4abf666acb56cf2d4246CAS |

[13]  W. Segal, R. L. Starkey, Microbial decomposition of methionine and identity of the resulting sulfur products. J. Bacteriol. 1969, 98, 908.
| 1:CAS:528:DyaF1MXkt1yjsbo%3D&md5=317714aea1ec28090c30350021a50ef5CAS | 5788717PubMed |

[14]  S. H. Zinder, T. D. Brock, Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments. Appl. Environ. Microbiol. 1978, 35, 344.
| 1:CAS:528:DyaE1cXktFWrs7k%3D&md5=65ca938514e2b2553444af98268ec306CAS | 16345275PubMed |

[15]  R. P. Kiene, R. S. Oremland, A. Catena, L. G. Miller, D. G. Capone, Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 1986, 52, 1037.
| 1:CAS:528:DyaL2sXptVOq&md5=82ca3a824ea54677958e5379f2917956CAS | 16347202PubMed |

[16]  R. P. Kiene, P. T. Visscher, Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl. Environ. Microbiol. 1987, 53, 2426.
| 1:CAS:528:DyaL2sXmtVCksb0%3D&md5=6d59ef7c5516a8acd62fbfd1b833184eCAS | 16347461PubMed |

[17]  S. F. Watts, The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos. Environ. 2000, 34, 761.
The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvFCgtw%3D%3D&md5=b728b9d9eebf77944783d61997b74deaCAS |

[18]  R. Bentley, T. G. Chasteen, Environmental VOSCs – formation and degradation of dimethyl sulfide, methanethiol and related materials. Chemosphere 2004, 55, 291.
Environmental VOSCs – formation and degradation of dimethyl sulfide, methanethiol and related materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWgtbo%3D&md5=97ea57de673a3bac1fcb6d35d9460e30CAS | 14987929PubMed |

[19]  D. McFarlane, R. George, Factors affecting dryland salinity in two wheat-belt catchments in Western Australia. Aust. J. Soil Res. 1992, 30, 85.
Factors affecting dryland salinity in two wheat-belt catchments in Western Australia.Crossref | GoogleScholarGoogle Scholar |

[20]  T. Krause, C. Tubbesing, K. Benzing, H. F. Schöler, Model reactions and natural occurrence of furans from hypersaline environments. Biogeosciences 2014, 11, 2871.
Model reactions and natural occurrence of furans from hypersaline environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Sju73J&md5=7cb50be77d560436d32122398576f2cbCAS |

[21]  E. Roedder, The fluids in salt. Am. Mineral. 1984, 69, 413.
| 1:CAS:528:DyaL2cXksVWitLw%3D&md5=8874c2b43f59957dfad0151856b18119CAS |

[22]  A. S. Andreyeve-Grigorovich, N. Oszczypko, N. A. Savitskaya, A. Slaczka, N. A. Trofimovich, Correlation of Late Badenian salts of Wieliczka, Bochnia and Kalush areas (Polish and Ukrainian Carpathian Foredeep). Ann. Soc. Geol. Pol. 2003, 73, 67.

[23]  A. de Leeuw, K. Bukowski, W. Krijgsman, K. F. Kuiper, Age of the Badenian Salinity Crisis; impact of Miocene climate variability on the circum-Mediterranean region. Geology 2010, 38, 715.
Age of the Badenian Salinity Crisis; impact of Miocene climate variability on the circum-Mediterranean region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFSitbc%3D&md5=6f63692918a09b70ff92383574709a0dCAS |

[24]  M. Bąbel, Badenian evaporite basin of the northern Carpathian Foredeep as a drawdown salina basin. Acta Geol. Pol. 2004, 54, 313.

[25]  S. G. Huber, S. Wunderlich, H. F. Schöler, J. Williams, Natural abiotic formation of furans in soil. Environ. Sci. Technol. 2010, 44, 5799.
Natural abiotic formation of furans in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wgurw%3D&md5=24e5250700bdaac70f32fa667427b83cCAS | 20614942PubMed |

[26]  Z. Yang, L. Kong, J. Zhang, L. Wang, S. Xi, Emission of biogenic sulfur gases from Chinese rice paddies. Sci. Total Environ. 1998, 224, 1.
Emission of biogenic sulfur gases from Chinese rice paddies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVKitb8%3D&md5=b60bc154bc18872da91322ae4cb666e8CAS |

[27]  P. Warneck, Chemistry of the Natural Atmosphere 2000 (Academic Press: San Diego, CA, USA).

[28]  B. P. Lomans, A. Smolders, L. M. Intven, A. Pol, D. Op, C. Van Der Drift, Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl. Environ. Microbiol. 1997, 63, 4741.
| 1:CAS:528:DyaK2sXnvV2rtrY%3D&md5=723077d8ab5a9492219ab675b84d5a9dCAS | 16535751PubMed |

[29]  K. Kotte, F. Löw, S. G. Huber, T. Krause, I. Mulder, H. F. Schöler, Organohalogen emissions from saline environments – spatial extrapolation using remote sensing as most promising tool. Biogeosciences 2012, 9, 1225.
Organohalogen emissions from saline environments – spatial extrapolation using remote sensing as most promising tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gks7rO&md5=c6e4c3c07f3491cdc925585d2719331fCAS |

[30]  E. B. M. Denner, T. J. McGenity, H.-J. Busse, W. D. Grant, G. Wanner, H. Stan-Lotter, Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int. J. Syst. Bacteriol. 1994, 44, 774.
Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine.Crossref | GoogleScholarGoogle Scholar |

[31]  H. Stan-Lotter, M. Pfaffenhuemer, A. Legat, H.-J. Busse, C. Radax, C. Gruber, Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian Alpine salt deposit. Int. J. Syst. Evol. Microbiol. 2002, 52, 1807.
Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian Alpine salt deposit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFyhs7Y%3D&md5=55a7e9d293eec461f9c36eb0de4fd66aCAS | 12361290PubMed |

[32]  R. Rinnan, M. Steinke, T. Mcgenity, F. Loreto, Plant volatiles in extreme terrestrial and marine environments. Plant Cell Environ. 2014, 37, 1776.
Plant volatiles in extreme terrestrial and marine environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOlsLvI&md5=9b78f91cc129e6e7b8350bec64dda303CAS | 24601952PubMed |

[33]  J. M. Attieh, A. D. Hanson, H. S. Saini, Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. J. Biol. Chem. 1995, 270, 9250.
Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1ajtrk%3D&md5=b129ab9c055f7cd8e719ccc4277fdbfaCAS | 7721844PubMed |

[34]  P. A. Steudler, B. J. Peterson, Contribution of gaseous sulphur from salt marshes to the global sulphur cycle. Nature 1984, 311, 455.
Contribution of gaseous sulphur from salt marshes to the global sulphur cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtFGltLg%3D&md5=4842e631fc31befd2caa978ed809d82cCAS |

[35]  M. Schidlowski, A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 1988, 333, 313.
A 3800-million-year isotopic record of life from carbon in sedimentary rocks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkt1ahtrk%3D&md5=aa8e8bf897da913e90e4ed89c4458a83CAS |

[36]  D. L. Jones, A. G. Owen, J. F. Farrar, Simple method to enable the high-resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol. Biochem. 2002, 34, 1893.
Simple method to enable the high-resolution determination of total free amino acids in soil solutions and soil extracts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVWqtLg%3D&md5=495ab16bd915209788ad4c8a5d1ed83fCAS |

[37]  D. A. Martens, K. L. Loeffelmann, Soil amino acid composition quantified by acid hydrolysis and anion chromatography–pulsed amperometry. J. Agric. Food Chem. 2003, 51, 6521.
Soil amino acid composition quantified by acid hydrolysis and anion chromatography–pulsed amperometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlylsL4%3D&md5=407c753fa30deaa9f44db7c9b129b3dfCAS | 14558773PubMed |

[38]  R. Fall, D. L. Albritton, F. C. Fehsenfeld, W. C. Kuster, P. D. Goldan, Laboratory studies of some environmental variables controlling sulfur emissions from plants. J. Atmos. Chem. 1988, 6, 341.
Laboratory studies of some environmental variables controlling sulfur emissions from plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFyjsbo%3D&md5=ea28e22745bd2e34e72df5d0d1e40000CAS |

[39]  H. S. Saini, J. M. Attieh, A. D. Hanson, Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction. Plant Cell Environ. 1995, 18, 1027.
Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXos1Cgtr0%3D&md5=8d62e4bbe565158e9aa75c3eac4fa9e6CAS |

[40]  J. T. G. Hamilton, W. C. McRoberts, F. Keppler, R. M. Kalin, D. B. Harper, Chloride methylation by plant pectin: an efficient environmentally significant process. Science 2003, 301, 206.
Chloride methylation by plant pectin: an efficient environmentally significant process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsF2gu7o%3D&md5=4a6b499255506015754ba9d67131a150CAS |

[41]  F. Keppler, R. Eiden, V. Niedan, J. Pracht, H. F. Schöler, Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 2000, 403, 298.
Halocarbons produced by natural oxidation processes during degradation of organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1ChsA%3D%3D&md5=c99967dc51e17d29c8d517dfdab9200dCAS | 10659846PubMed |

[42]  A. Wishkerman, S. Gebhardt, C. W. McRoberts, J. T. G. Hamilton, J. Williams, F. Keppler, Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature. Environ. Sci. Amp. Technol. 2008, 42, 6837.
Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslOhtLk%3D&md5=1b0a8e7cbb72141fa84c79ba374e5f3cCAS |

[43]  P. W. Atkins, J. de Paula, Kurzlehrbuch Physikalische Chemie, 4th edn 2008 (Wiley-VCH: Weinheim).

[44]  R. Staubes, H.-W. Georgii, G. Ockelmann, Flux of COS, DMS and CS2 from various soils in Germany. Tellus B Chem. Phys. Meterol. 1989, 41B, 305.
Flux of COS, DMS and CS2 from various soils in Germany.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitVagsLk%3D&md5=188890d26e9f6e1cd93654d0ecccf3f4CAS |

[45]  A. Janssen, P. L. F. van den Bosch, R. C. van Leerdam, M. de Graaff, Bioprocesses for the removal of volatile sulfur compounds from gas streams, in Air Pollution Prevention and Control (Eds C. Kennes, M. C. Veiga) 2013, pp. 247–274 (Wiley: Chichester, UK)10.1002/9781118523360.CH11

[46]  N. A. Smith, D. P. Kelly, Mechanism of oxidation of dimethyl disulphide by Thiobacillus thioparus strain E6. J. Gen. Microbiol. 1988, 134, 3031.
| 1:CAS:528:DyaL1MXlsVantA%3D%3D&md5=5ed63c667da26d7eca0e48a8b285c8caCAS |

[47]  F. Challenger, P. T. Charlton, Studies on biological methylation. Part X. The fission of the mono-and disulphide links by moulds. J. Chem. Soc. 1947, 84, 424.
Studies on biological methylation. Part X. The fission of the mono-and disulphide links by moulds.Crossref | GoogleScholarGoogle Scholar |

[48]  J. R. Kastner, K. C. Das, Q. Buquoi, N. D. Melear, Low-temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash. Environ. Sci. Technol. 2003, 37, 2568.
Low-temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFKhu78%3D&md5=163435e1774f532bc2aac7894e602807CAS | 12831045PubMed |

[49]  R. F. Höckendorf, Q. Hao, Z. Sun, B. S. Fox-Beyer, Y. Cao, O. P. Balaj, V. E. Bondybey, C.-K. Siu, M. K. Beyer, Reactions of CH3SH and CH3SSCH3 with gas-phase hydrated radical anions (H2O)n•–, CO2•–(H2O)n, and O2•–(H2O)n. J. Phys. Chem. A 2012, 116, 3824.
Reactions of CH3SH and CH3SSCH3 with gas-phase hydrated radical anions (H2O)n•–, CO2•–(H2O)n, and O2•–(H2O)n.Crossref | GoogleScholarGoogle Scholar | 22435875PubMed |

[50]  S. Meinardi, I. J. Simpson, N. J. Blake, D. R. Blake, F. S. Rowland, Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia. Geophys. Res. Lett. 2003, 30, 1454.
Dimethyl disulfide (DMDS) and dimethyl sulfide (DMS) emissions from biomass burning in Australia.Crossref | GoogleScholarGoogle Scholar |

[51]  A. Garlicki, J. Wiewiórka, The distribution of bromine in some halite rock salts of the Wieliczka salt deposit (Poland). Ann. Soc. Geol. Pol. 1981, 51, 353.
| 1:CAS:528:DyaL38XksVWks7c%3D&md5=b1d4203b43f25af92abc3400bb12827aCAS |

[52]  K. Bukowski, Zawartość bromu w solach badenskich Bochni. Przeglad Geol. 1997, 45, 819.