Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Free Zn2+ determination in natural freshwaters of the Pyrenees: towards on-site measurements with AGNES

Corinne Parat A C , Laurent Authier A , Alain Castetbon A , David Aguilar B , Encarna Companys B , Jaume Puy B , Josep Galceran B and Martine Potin-Gautier A
+ Author Affiliations
- Author Affiliations

A Université de Pau et des Pays de l’Adour , Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), IPREM, UMR CNRS 5254, 2 Avenue du Président Angot, F-64053 Pau Cedex 9, France.

B Departament de Química, Universitat de Lleida, Rovira Roure 191, E-25198 Lleida, Spain.

C Corresponding author. Email: corinne.parat@univ-pau.fr

Environmental Chemistry 12(3) 329-337 https://doi.org/10.1071/EN14184
Submitted: 12 September 2014  Accepted: 5 November 2014   Published: 1 April 2015

Environmental context. Knowledge of the speciation of metals, especially of the free metal ion concentration, is essential to understand the fate of these elements in rivers and their effects on living organisms. On-site analyses are preferred for these measurements as they allow problems associated with sample transportation and preservation to be avoided. In this context, an on-site methodology based on an electrochemical method and screen-printed sensors has been developed in the laboratory and validated on site.

Abstract. An on-site methodology has been developed for the direct determination of free Zn2+ with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) in freshwaters. This implementation includes: (i) the use of screen-printed electrodes, which provide good limits of detection and easy transportation and deployment; (ii) no need for sample purging; (iii) a calibration in a synthetic river solution that reproduces the speciation changes of the natural samples well and allows oxygen interference to be minimised; (iv) the addition of a background electrolyte up to 0.01 mol L–1 in both the calibration and freshwater samples; (v) chemical stripping chronopotentiometry as the quantification stage of AGNES. This procedure minimises the effects of working at low ionic strength and in the presence of dissolved oxygen. In the laboratory, the methodology was checked with different natural samples taken from rivers Garonne, Gave de Cauterets and Gave de Pau in the Pyrenees. Results appeared in good agreement with theoretical estimations computed from Visual Minteq. On-site measurements were performed for the first time with AGNES in the Gave de Cauterets in Soulom (France) and the results were corroborated with purged measurements performed in the laboratory.

Additional keywords: FIAM, geochemical model, heavy metals, screen-printed electrodes, speciation.


References

[1]  A. Schneider, Adaptation of the ion-exchange method for the determination of the free ionic fraction of cadmium in solution. J. Environ. Qual. 2006, 35, 394.
Adaptation of the ion-exchange method for the determination of the free ionic fraction of cadmium in solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGit7c%3D&md5=da6372db3252711ec6e86830fa58c22bCAS | 16397115PubMed |

[2]  E. J. M. Temminghoff, A. C. C. Plette, R. Van Eck, W. H. Van Riemsdijk, Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique. Anal. Chim. Acta 2000, 417, 149.
Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslWlsb8%3D&md5=276470491c6d62ea3d0bb9844088da2cCAS |

[3]  L. Weng, F. Alonso Vega, W. H. Van Riemsdijk, Strategies in the application of the Donnan membrane technique. Environ. Chem. 2011, 8, 466.
Strategies in the application of the Donnan membrane technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlykt7zL&md5=01088f3ec2ed106026627ff377b8382eCAS |

[4]  A. Gramlich, S. Tandy, V. I. Slaveykova, A. Duffner, R. Schulin, The use of permeation liquid membranes for free zinc measurements in aqueous solution. Environ. Chem. 2012, 9, 429.
The use of permeation liquid membranes for free zinc measurements in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmtrrJ&md5=02a18c24048e376526570a153bf653beCAS |

[5]  J. D. Allison, D. S. Brown, K. J. Novo-Gradac, MINTEQA2/PRODEFA2, A geochemichal assessment model for environmental systems: version 3.0 user’s manual, EPA/600/3–91/021 1991 (US EPA: Washington, DC).

[6]  J. P. Gustafsson, D. Berggren-Kleja, Modeling salt-dependent proton binding by organic soils with the NICA–Donnan and Stockholm Humic Models. Environ. Sci. Technol. 2005, 39, 5372.
Modeling salt-dependent proton binding by organic soils with the NICA–Donnan and Stockholm Humic Models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVejuro%3D&md5=aa3cf897008a304dd0b7812cf9c92b2fCAS | 16082968PubMed |

[7]  J. Y. Cornu, C. Parat, A. Schneider, L. Authier, M. Dauthieu, V. Sappin-Didier, L. Denaix, Cadmium speciation assessed by voltammetry, ion-exchange and geochemical calculation in soil solutions collected after soil rewetting. Chemosphere 2009, 76, 502.
Cadmium speciation assessed by voltammetry, ion-exchange and geochemical calculation in soil solutions collected after soil rewetting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVSjtrs%3D&md5=ecc627d2bb07e929af10c8b8a82d3ca1CAS | 19356783PubMed |

[8]  K. K. Mueller, S. Lofts, C. Fortin, P. G. C. Campbell, Trace metal speciation predictions in natural aquatic systems: incorporation of dissolved organic matter (DOM) spectroscopic quality. Environ. Chem. 2012, 9, 356.
Trace metal speciation predictions in natural aquatic systems: incorporation of dissolved organic matter (DOM) spectroscopic quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajsb7L&md5=ba05a8430950342be26e23dfc5ae038eCAS |

[9]  E. Bakker, P. Buhlmann, E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083.
Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFSiu74%3D&md5=015ae69a3d2ecd3e91cfb3a273f75dc1CAS | 11851486PubMed |

[10]  E. Bakker, E. Pretsch, The new wave of ion-selective electrodes. Anal. Chem. 2002, 74, 420A.
The new wave of ion-selective electrodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlsl2ktL8%3D&md5=720e4a5e6339de5c6e09cecd2607e231CAS | 12175191PubMed |

[11]  J. Galceran, E. Companys, J. Puy, J. Cecilia, J. L. Garces, AGNES: a new electroanalytical technique for measuring free metal ion concentration. J. Electroanal. Chem. 2004, 566, 95.
AGNES: a new electroanalytical technique for measuring free metal ion concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislGhsro%3D&md5=c23f656f26bb054e4f89d31beac640f7CAS |

[12]  E. Companys, J. Puy, J. Galceran, Humic acid complexation to Zn and Cd determined with the new electroanalytical technique AGNES. Environ. Chem. 2007, 4, 347.
| 1:CAS:528:DC%2BD2sXht1yiu7jK&md5=2ebf651a60a20c605fdebf4cc3ea749dCAS |

[13]  J. Galceran, C. Huidobro, E. Companys, G. Alberti, AGNES: a technique for determining the concentration of free metal ions. The case of ZnII in coastal Mediterranean seawater. Talanta 2007, 71, 1795.
AGNES: a technique for determining the concentration of free metal ions. The case of ZnII in coastal Mediterranean seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1ylu78%3D&md5=72e307055a558c3ba66363344af3c11cCAS | 19071525PubMed |

[14]  F. Zavarise, E. Companys, J. Galceran, G. Alberti, A. Profumo, Application of the new electroanalytical technique AGNES for the determination of free Zn concentration in river water. Anal. Bioanal. Chem. 2010, 397, 389.
Application of the new electroanalytical technique AGNES for the determination of free Zn concentration in river water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Cluw%3D%3D&md5=6126ad31ae16c619ec2748dd6b4ef002CAS | 20099059PubMed |

[15]  D. Chito, L. Weng, J. Galceran, E. Companys, J. Puy, W. H. Van Riemsdijk, H. P. Van Leeuwen, Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique). Sci. Total Environ. 2012, 421–422, 238.
Determination of free Zn2+ concentration in synthetic and natural samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique).Crossref | GoogleScholarGoogle Scholar | 22341403PubMed |

[16]  M. Díaz-de-Alba, M. D. Galindo-Riaño, J. P. Pinheiro, Lead electrochemical speciation analysis in seawater media by using AGNES and SSCP techniques. Environ. Chem. 2014, 11, 137.
Lead electrochemical speciation analysis in seawater media by using AGNES and SSCP techniques.Crossref | GoogleScholarGoogle Scholar |

[17]  D. Aguilar, J. Galceran, E. Companys, J. Puy, C. Parat, L. Authier, M. Potin, Non-purged voltammetry explored with AGNES. Phys. Chem. Chem. Phys. 2013, 15, 17510.
Non-purged voltammetry explored with AGNES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WnsbzL&md5=7f8f46c08eb1c395bc9269e31e1f5f15CAS | 24026483PubMed |

[18]  D. Aguilar, C. Parat, J. Galceran, E. Companys, J. Puy, L. Authier, M. Potin-Gautier, Determination of free metal ion concentrations with AGNES in low ionic strength media. J. Electroanal. Chem. 2013, 689, 276.
Determination of free metal ion concentrations with AGNES in low ionic strength media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFeiurc%3D&md5=66b0f7692666a0b99c6ae981ba7e7724CAS |

[19]  C. Parat, L. Authier, D. Aguilar, E. Companys, J. Puy, J. Galceran, M. Potin-Gautier, Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNES. Analyst 2011, 136, 4337.
Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ags7jN&md5=50f7ac00b722b04cd1586ea0b4eb58acCAS | 21879035PubMed |

[20]  C. Parat, D. Aguilar, L. Authier, M. Potin-Gautier, E. Companys, J. Puy, J. Galceran, Determination of free metal concentrations using screen-printed electrodes and AGNES with the charge as response function. Electroanalysis 2011, 23, 619.
| 1:CAS:528:DC%2BC3MXkvFCmtLY%3D&md5=4a1a87190a51ce757aaa0b24eb8ab762CAS |

[21]  J. P. Gustafsson, Visual Minteq, version 3.0 2010. Available at http://www2.lwr.kth.se/English/Oursoftware/vminteq/ [Verified 28 January 2015].

[22]  C. Parat, L. Authier, S. Betelu, N. Petrucciani, M. Potin-Gautier, Determination of labile cadmium using a screen-printed electrode modified by a microwell. Electroanalysis 2007, 19, 403.
Determination of labile cadmium using a screen-printed electrode modified by a microwell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFWgu7Y%3D&md5=2b55111d4e5198cf9afbca53ec6eef51CAS |

[23]  Meteo-France, Bulletin National de Situation Hydrologique 2012. Available at http://www.eaufrance.fr/docs/bsh/2012/07/precipitations.php [Verified 28 January 2015].

[24]  C. S. Sjöstedt, J. P. Gustafsson, S. J. Köhler, Chemical equilibrium modeling of organic acids, pH, aluminium, and iron in Swedish surface waters. Environ. Sci. Technol. 2010, 44, 8587.
Chemical equilibrium modeling of organic acids, pH, aluminium, and iron in Swedish surface waters.Crossref | GoogleScholarGoogle Scholar | 20958024PubMed |

[25]  R. M. Town, H. P. van Leeuwen, Fundamental features of metal ion determination by stripping chronopotentiometry. J. Electroanal. Chem. 2001, 509, 58.
Fundamental features of metal ion determination by stripping chronopotentiometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFOhsrw%3D&md5=18d48865ff70411b808473bb14255cc0CAS |

[26]  M. L. Tercier, J. Buffle, A. Zirino, R. R. De Vitre, In situ voltammetric measurement of trace elements in lakes and oceans. Anal. Chim. Acta 1990, 237, 429.
In situ voltammetric measurement of trace elements in lakes and oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFyrsw%3D%3D&md5=e8d0cdfc0b999ee3f4f1ac1b9736203fCAS |

[27]  D. Jagner, A. Graneli, Potentiometric stripping analysis. Anal. Chim. Acta 1976, 83, 19.
Potentiometric stripping analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XltFKiurk%3D&md5=afa45a356da9cba0ae834d651e5f3f9dCAS |

[28]  C. Parat, A. Schneider, A. Castetbon, M. Potin-Gautier, Determination of trace metal speciation parameters by using screen-printed electrodes in stripping chronopotentiometry without deaerating. Anal. Chim. Acta 2011, 688, 156.
Determination of trace metal speciation parameters by using screen-printed electrodes in stripping chronopotentiometry without deaerating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Gnsb0%3D&md5=ffebf5cd92baabe6b30090acb95f2f5aCAS | 21334480PubMed |

[29]  D. C. Harris, Quantitative Chemical Analysis 2007 (Craig Bleyer: New York).

[30]  R. M. Town, H. P. van Leeuwen, Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 5. Features of multimetal systems. J. Electroanal. Chem. 2004, 573, 147.
| 1:CAS:528:DC%2BD2cXosFSrs7g%3D&md5=ddb9688af25a93e20a13e4b623800331CAS |

[31]  D. Chito, J. Galceran, E. Companys, The impact of intermetallic compounds CuxZn in the determination of free Zn2+ concentration with AGNES. Electroanalysis 2010, 22, 2024.
The impact of intermetallic compounds CuxZn in the determination of free Zn2+ concentration with AGNES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOitrvO&md5=6360c629fea1c2e619d6846d93fec118CAS |

[32]  J. Inczédy, T. Lengyel, A. M. Ure, Compendium of Analytical Nomenclature – Definitive Rules 1997 Available at http://iupac.org/publications/analytical_compendium/ [Verified 28 January 2015].

[33]  S. I. Korfali, B. E. Davies, Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers. Adv. Environ. Res. 2004, 8, 599.
Speciation of metals in sediment and water in a river underlain by limestone: role of carbonate species for purification capacity of rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWjs7o%3D&md5=68537f67ab98c3164cdfde7a613e5a47CAS |

[34]  T. Cheng, H. E. Allen, Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters. J. Environ. Manage. 2006, 80, 222.
Comparison of zinc complexation properties of dissolved natural organic matter from different surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFCqu7g%3D&md5=beb4dc4b06e54671d2f101145e11e7e0CAS | 16338053PubMed |

[35]  E. Tipping, S. Lofts, A. J. Lawlor, Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Sci. Total Environ. 1998, 210–211, 63.
Modelling the chemical speciation of trace metals in the surface waters of the Humber system.Crossref | GoogleScholarGoogle Scholar | 9573625PubMed |