Microbial fuel cells under extreme salinity: performance and microbial analysis
Oihane Monzon A , Yu Yang A , Cong Yu A , Qilin Li A and Pedro J. J. Alvarez A BA Department of Civil & Environmental Engineering, Rice University, Houston, TX 77005, USA.
B Corresponding author. Email: alvarez@rice.edu
Environmental Chemistry 12(3) 293-299 https://doi.org/10.1071/EN13243
Submitted: 31 December 2013 Accepted: 3 April 2014 Published: 20 June 2014
Environmental context. The treatment of extremely saline, high-strength wastewaters while producing electricity represents a great opportunity to mitigate environmental effects and recover resources associated with wastes from shale oil and gas production. This paper demonstrates that extreme halophilic microbes can produce electricity at salinity up to 3- to 7-fold higher than sea water.
Abstract. Many industries generate hypersaline wastewaters with high organic strength, which represent a major challenge for pollution control and resource recovery. This study assesses the potential for microbial fuel cells (MFCs) to treat such wastewaters and generate electricity under extreme salinity. A power density of up to 71 mW m–2 (318 mW m–3) with a Coulombic efficiency of 42 % was obtained with 100 g L–1 NaCl, and the capability of MFCs to generate electricity in the presence of up to 250 g L–1 NaCl was demonstrated for the first time. Pyrosequencing analysis of the microbial community colonising the anode showed the predominance of a single genus, Halanaerobium (85.7 %), which has been found in late flowback fluids and is widely distributed in shale formations and oil reservoirs. Overall, this work encourages further research to assess the feasibility of MFCs to treat hypersaline wastewaters generated by the oil and gas industry.
Additional keywords: electric power, Firmicutes, Halanaerobium, pyrosequencing.
References
[1] O. Lefebvre, S. Quentin, M. Torrijos, J. J. Godon, J. P. Delgenes, R. Moletta, Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors. Appl. Microbiol. Biotechnol. 2007, 75, 61.| Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1ahu78%3D&md5=ffa9ddc825f3fc8b32f751f8a57c19c1CAS | 17245575PubMed |
[2] R. W. K. Leung, D. C. H. Li, W. K. Yu, H. K. Chui, T. O. Lee, M. C. M. van Loosdrecht, G. H. Chen, Integration of seawater and grey water reuse to maximize alternative water resource for coastal areas: the case of the Hong Kong International Airport. Water Sci. Technol. 2012, 65, 410.
| Integration of seawater and grey water reuse to maximize alternative water resource for coastal areas: the case of the Hong Kong International Airport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFyjsrk%3D&md5=18ab53c9372a0ffd90fdb27c39a3ec2aCAS |
[3] B. M. Peyton, T. Wilson, D. R. Yonge, Kinetics of phenol biodegradation in high salt solutions. Water Res. 2002, 36, 4811.
| Kinetics of phenol biodegradation in high salt solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslSqsr4%3D&md5=05bc594a001ef99115546526ea150886CAS | 12448524PubMed |
[4] O. Lefebvre, R. Moletta, Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res. 2006, 40, 3671.
| Treatment of organic pollution in industrial saline wastewater: a literature review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wnsb%2FK&md5=1181db669f4f52e06ee51bf72b452ddbCAS | 17070895PubMed |
[5] K. J. Chae, M. J. Choi, J. Lee, F. F. Ajayi, I. S. Kim, Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int. J. Hydrogen Energy 2008, 33, 5184.
| Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOltb%2FM&md5=20dc4e465a2f7484274e9d89fbe20fe2CAS |
[6] S. A. Cheng, P. Kiely, B. E. Logan, Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs. Bioresour. Technol. 2011, 102, 367.
| Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CgsLbK&md5=009ce32856b11325885afb0f4c295bcfCAS |
[7] J. T. Babauta, H. D. Nguyen, H. Beyenal, Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism. Environ. Sci. Technol. 2011, 45, 6654.
| Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal an electron transfer mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1agtbs%3D&md5=29f8bc153ac620fd3b76c63c27d96786CAS | 21648431PubMed |
[8] K. J. Chae, M. J. Choi, J. W. Lee, K. Y. Kim, I. S. Kim, Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 2009, 100, 3518.
| Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVWru74%3D&md5=37896e1f8dee4e593fad656fa270bebaCAS | 19345574PubMed |
[9] B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, J. C. Biffinger, J. M. Jones-Meehan, High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 2006, 40, 2629.
| High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Omtbk%3D&md5=d2af997233a8ec6236d40a52e012f333CAS | 16683602PubMed |
[10] Y. J. Feng, Q. A. Yang, X. Wang, Y. K. Liu, H. Lee, N. Q. Ren, Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour. Technol. 2011, 102, 411.
| Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CgsLfI&md5=67a0dcb4018f3275587dad7d8bd4a534CAS |
[11] L. P. Huang, B. E. Logan, Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl. Microbiol. Biotechnol. 2008, 80, 349.
| Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVeqtrg%3D&md5=7b6b123d5c18161390abccd635232cdfCAS |
[12] P. T. Ha, T. K. Lee, B. E. Rittmann, J. Park, I. S. Chang, Treatment of alcohol distillery wastewater using a bacteroidetes-dominant thermophilic microbial fuel cell. Environ. Sci. Technol. 2012, 46, 3022.
| Treatment of alcohol distillery wastewater using a bacteroidetes-dominant thermophilic microbial fuel cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yrs7c%3D&md5=c898f1ed873e34cc26256e9b5b6f9132CAS | 22280522PubMed |
[13] S. Puig, M. Serra, M. Coma, M. Cabre, M. D. Balaguer, J. Colprim, Microbial fuel cell application in landfill leachate treatment. J. Hazard. Mater. 2011, 185, 763.
| Microbial fuel cell application in landfill leachate treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCksL7K&md5=34a1e283081ad7e347b7237d724e7835CAS | 20970254PubMed |
[14] O. Lefebvre, Z. Tan, S. Kharkwal, H. Y. Ng, Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour. Technol. 2012, 112, 336.
| Effect of increasing anodic NaCl concentration on microbial fuel cell performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOlu7g%3D&md5=f081bd81c7fabd9425f8b34281002ac7CAS | 22414574PubMed |
[15] R. M. Atlas, Handbook of Microbiological Media 1993 (CRC Press, Inc.: Boca Raton, FL, USA).
[16] E. C. Chapman, R. C. Capo, B. W. Stewart, C. S. Kirby, R. W. Hammack, K. T. Schroeder, H. M. Edenborn, Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction. Environ. Sci. Technol. 2012, 46, 3545.
| Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislOmsbg%3D&md5=146c21e2226921976a5813196efbbd7dCAS | 22360406PubMed |
[17] B. Logan, S. Cheng, V. Watson, G. Estadt, Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 2007, 41, 3341.
| Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtF2msrY%3D&md5=05dd433f13d581acb88e717bbfcc4d50CAS | 17539547PubMed |
[18] B. E. Logan, B. Hamelers, R. A. Rozendal, U. Schrorder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181.
| Microbial fuel cells: Methodology and technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVeisrs%3D&md5=9c6a735833e8d8b1c827feaacd84448aCAS | 16999087PubMed |
[19] J. R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity, J. M. Tiedje, The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37, D141.
| The Ribosomal Database Project: improved alignments and new tools for rRNA analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFejtLbF&md5=8cf2ca1d6e7ed8cd1d9ee8f71971c739CAS | 19004872PubMed |
[20] E. S. Wright, L. S. Yilmaz, D. R. Noguera, DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 2012, 78, 717.
| DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOitLY%3D&md5=13e170b0883747122c0ba46539efeef2CAS | 22101057PubMed |
[21] J. J. Cannone, S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D'Souza, Y. S. Du, B. Feng, N. Lin, L. V. Madabusi, K. M. Müller, N. Pande, Z. Shang, N. Yu, R. R. Gutell, The Comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002, 3, 2.
| The Comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs.Crossref | GoogleScholarGoogle Scholar | 11869452PubMed |
[22] M. J. Claesson, O. O'Sullivan, Q. Wang, J. Nikkila, J. R. Marchesi, H. Smidt, W. M. de Vos, R. P. Ross, P. W. O’Toole, Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 2009, 4, e6669.
| Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine.Crossref | GoogleScholarGoogle Scholar | 19693277PubMed |
[23] Q. Wang, G. M. Garrity, J. M. Tiedje, J. R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261.
| Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsleqtrc%3D&md5=50c0fc5829603ca9dc995c3e9231b828CAS | 17586664PubMed |
[24] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731.
| MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=93c0154ad6b9370c56db71b4857ba492CAS | 21546353PubMed |
[25] L. R. Lynd, P. J. Weimer, W. H. van Zyl, I. S. Pretorius, Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506..
| Microbial cellulose utilization: fundamentals and biotechnology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFOitrk%3D&md5=e08825a1197adc3184aa01015fde7d33CAS | 12209002PubMed |
[26] D. R. Lovley, Taming electricigens: how electricity-generating microbes can keep going, and going – faster. Scientist 2006, 20, 46.
[27] S. Jung, J. M. Regan, Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells. Appl. Environ. Microbiol. 2011, 77, 564.
| Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVOqsbY%3D&md5=4cf0445f7f1feaf44e260acdf733e2f3CAS | 21075886PubMed |
[28] P. Parameswaran, H. S. Zhang, C. I. Torres, B. E. Rittmann, R. Krajmalnik-Brown, Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers. Biotechnol. Bioeng. 2010, 105, 69.
| Microbial community structure in a biofilm anode fed with a fermentable substrate: the significance of hydrogen scavengers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVymsbfF&md5=ec4dfd9ab18c0aa4253c4b03c9089b22CAS | 19688868PubMed |
[29] Y. Ahn, B. E. Logan, Saline catholytes as alternatives to phosphate buffers in microbial fuel cells. Bioresour. Technol. 2013, 132, 436.
| Saline catholytes as alternatives to phosphate buffers in microbial fuel cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFemtrs%3D&md5=70bb5c1628cc5743c8774477d9019ae7CAS | 23433978PubMed |
[30] A. Fakhru’l-Razi, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni, Z. Z. Abidin, Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530.
| Review of technologies for oil and gas produced water treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGqur3I&md5=fc07decfc64388c0c989dd701ce3a412CAS | 19505758PubMed |
[31] C. Forrestal, P. Xu, Z. Y. Ren, Sustainable desalination using a microbial capacitive desalination cell. Energy & Environmental Science 2012, 5, 7161.
| Sustainable desalination using a microbial capacitive desalination cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVWqsbg%3D&md5=b051eecf566d0c84b5dbdc067b21bc19CAS |
[32] B. E. Logan, Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375.
| Exoelectrogenic bacteria that power microbial fuel cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2gu7g%3D&md5=ff1ca17adaf3a1db6109512cc0b08654CAS | 19330018PubMed |
[33] K. P. Katuri, A. M. Enright, V. O'Flaherty, D. Leech, Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry 2012, 87, 164.
| Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1egtLvI&md5=722b3f82e71562ef489c3474c8cbe399CAS | 22226620PubMed |
[34] Y. Liu, F. Harnisch, K. Fricke, U. Schroder, V. Climent, J. M. Feliu, The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosens. Bioelectron. 2010, 25, 2167.
| The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXks1Khtb4%3D&md5=165c93ddefc5629aa8faeda80111acc0CAS | 20189793PubMed |
[35] A. Murali Mohan, A. Hartsock, R. W. Hammack, R. D. Vidic, K. B. Gregory, Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas. FEMS Microbiol. Ecol. 2013, 86, 567.
| Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGgsrnE&md5=85e043c842cc9c12103f3bc47efdabdcCAS | 23875618PubMed |
[36] A. Murali Mohan, A. Hartsock, K. J. Bibby, R. W. Hammack, R. D. Vidic, K. B. Gregory, Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction. Environ. Sci. Technol. 2013, 47, 13 141.
| Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGqurbM&md5=78d75f6a78fce3818b5c3be4ddd90a87CAS |
[37] N. J. Beecroft, F. Zhao, J. R. Varcoe, R. C. T. Slade, A. E. Thumser, C. Avignone-Rossa, Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Appl. Microbiol. Biotechnol. 2012, 93, 423.
| Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose.Crossref | GoogleScholarGoogle Scholar | 21984392PubMed |
[38] D. Ki, J. Park, J. Lee, K. Yoo, Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells. Water Sci. Technol. 2008, 58, 2195.
| Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1Wmsbs%3D&md5=b1b4322ff38bbb645ad9d4824a9b7403CAS | 19092196PubMed |
[39] C. A. Pham, S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, B. H. Kim, H. Yi, J. Chun, A novel electrochemically active and FeIII-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett. 2003, 223, 129.
| A novel electrochemically active and FeIII-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOltrw%3D&md5=79c55f3dc2cd384999e0e9b37d68cbf9CAS | 12799011PubMed |
[40] A. S. Finch, T. D. Mackie, C. J. Sund, J. J. Sumner, Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. Bioresour. Technol. 2011, 102, 312.
| Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CgsLnL&md5=639e649ff55fe6bc69b23ba041be3102CAS | 20655198PubMed |
[41] A. Hussain, G. Bruant, P. Mehta, V. Raghavan, B. Tartakovsky, S. R. Guiot, Population analysis of mesophilic microbial fuel cells fed with carbon monoxide. Appl. Biochem. Biotechnol. 2014, 172, 713.
| Population analysis of mesophilic microbial fuel cells fed with carbon monoxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1SktbfM&md5=c0571a3537b96ffa57b16968077ed5bbCAS | 24122627PubMed |
[42] U. Michaelidou, A. ter Heijne, G. J. Euverink, H. V. Hamelers, A. J. Stams, J. S. Geelhoed, Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Appl. Environ. Microbiol. 2011, 77, 1069.
| Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVOqsr4%3D&md5=2b1689551eb71181dce343a986025c3dCAS | 21131513PubMed |
[43] G. T. Kim, G. Webster, J. W. Wimpenny, B. H. Kim, H. J. Kim, A. J. Weightman, Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol. 2006, 101, 698.
| Bacterial community structure, compartmentalization and activity in a microbial fuel cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyqu7vI&md5=32f6f31383528199d378a0040ea2b126CAS | 16907820PubMed |
[44] P. D. Kiely, R. Cusick, D. F. Call, P. A. Selembo, J. M. Regan, B. E. Logan, Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour. Technol. 2011, 102, 388.
| Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CgsLfM&md5=e774010463d37d5c9431c52723a05960CAS | 20554197PubMed |
[45] H. Abdeljabbar, J. L. Cayol, W. Ben Hania, A. Boudabous, N. Sadfi, M. L. Fardeau, Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha. Int. J. Syst. Evol. Microbiol. 2013, 63, 2069.
| Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOku7fE&md5=e149cdc617838818e1e9ca1f02e7d2fcCAS | 23064350PubMed |
[46] A. T. Kivistö, M. T. Karp, Halophilic anaerobic fermentative bacteria. J. Biotechnol. 2011, 152, 114.
| Halophilic anaerobic fermentative bacteria.Crossref | GoogleScholarGoogle Scholar | 20804793PubMed |
[47] L. D. Sette, K. C. Simioni, S. P. Vasconcellos, L. J. Dussan, E. V. Neto, V. M. Oliveira, Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Antonie van Leeuwenhoek 2007, 91, 253.
| Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVSqsr0%3D&md5=024b1254f8ae6fa114baa9f7b452df70CAS | 17072536PubMed |
[48] V. M. de Oliveira, L. Durães Sette, K. C. Marques Simioni, E. V. Dos Santos Neto, Bacterial diversity characterization in petroleum samples from Brazilian reservoirs. Braz. J. Microbiol. 2008, 39, 445.
| Bacterial diversity characterization in petroleum samples from Brazilian reservoirs.Crossref | GoogleScholarGoogle Scholar | 24031244PubMed |
[49] I. Neria-González, E. T. Wang, F. Ramirez, J. M. Romero, C. Hernandez-Rodriguez, Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 2006, 12, 122.
| Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico.Crossref | GoogleScholarGoogle Scholar | 16765858PubMed |
[50] H. Dahle, F. Garshol, M. Madsen, N. K. Birkeland, Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie van Leeuwenhoek 2008, 93, 37.
| Microbial community structure analysis of produced water from a high-temperature North Sea oil-field.Crossref | GoogleScholarGoogle Scholar | 17588160PubMed |
[51] J. P. Davis, C. G. Struchtemeyer, M. S. Elshahed, Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA). Microb. Ecol. 2012, 64, 942.
| Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGjsrjI&md5=0615f2aafcc6bde85a788d8e1918e719CAS | 22622766PubMed |
[52] M. A. Cluff, Microbial aspects of shale flowback fluids and response to hydraulic fracturing fluids 2013 M.Sc. thesis, Department of Environmental Science, Ohio State University.
[53] S. Baena, M. L. Fardeau, M. Labat, B. Ollivier, J. L. Garcia, B. K. Patel, Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst. Appl. Microbiol. 1998, 21, 498.
| Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlyjuw%3D%3D&md5=67c41b5bef418f6ed4a67002be2ba941CAS | 9924817PubMed |
[54] D. Suzuki, A. Ueki, T. Shizuku, Y. Ohtaki, K. Ueki, Desulfovibrio butyratiphilus sp. nov., a Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic municipal sewage sludge digester. Int. J. Syst. Evol. Microbiol. 2010, 60, 595.
| Desulfovibrio butyratiphilus sp. nov., a Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic municipal sewage sludge digester.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltValsLc%3D&md5=6f21b724e8206f095bc629ee7887e5ebCAS | 19654341PubMed |
[55] E. Miranda-Tello, M. L. Fardeau, L. Fernandez, F. Ramirez, J. L. Cayol, P. Thomas, J. L. Garcia, B. Ollivier, Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 2003, 9, 97.
| Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFyksbo%3D&md5=f4e0b8e4e7e691c309928d6ee1bf99dbCAS | 16887695PubMed |
[56] M. Magot, P. Caumette, J. M. Desperrier, R. Matheron, C. Dauga, F. Grimont, L. Carreau, Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int. J. Syst. Bacteriol. 1992, 42, 398.
| Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt12ksbw%3D&md5=aa18069aa5a06b6b04496ff21995c7b7CAS | 1380287PubMed |
[57] Z. Ben Ali Gam, R. Oueslati, S. Abdelkafi, L. Casalot, J. L. Tholozan, M. Labat, Desulfovibrio tunisiensis sp. nov., a novel weakly halotolerant, sulfate-reducing bacterium isolated from exhaust water of a Tunisian oil refinery. Int. J. Syst. Evol. Microbiol. 2009, 59, 1059.
| Desulfovibrio tunisiensis sp. nov., a novel weakly halotolerant, sulfate-reducing bacterium isolated from exhaust water of a Tunisian oil refinery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1Glsbs%3D&md5=1875216045ee2ef3604a6ff4d19a173bCAS | 19406793PubMed |
[58] V. Klepac-Ceraj, M. Bahr, B. C. Crump, A. P. Teske, J. E. Hobbie, M. F. Polz, High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ. Microbiol. 2004, 6, 686.
| High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1ylsr0%3D&md5=f55dabd396e5d793bba60e764d0c08efCAS | 15186347PubMed |
[59] J. F. Miceli, P. Parameswaran, D. W. Kang, R. Krajmalnik-Brown, C. I. Torres, Enrichment and analysis of anode-respiring bacteria from diverse anaerobic inocula. Environ. Sci. Technol. 2012, 46, 10349.
| 1:CAS:528:DC%2BC38Xht1aqsrvM&md5=f2420f053608dc78ee665bca90066cd6CAS | 22909141PubMed |
[60] S. D. Brown, M. B. Begemann, M. R. Mormile, J. D. Wall, C. S. Han, L. A. Goodwin, S. Pitluck, M. L. Land, L. J. Hauser, D. A. Elias, Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogeniformans. J. Bacteriol. 2011, 193, 3682.
| Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogeniformans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFWktbg%3D&md5=35ae673c3b0f312813a1c5a5d0890b0bCAS | 21602336PubMed |
[61] V. K. Bhupathiraju, M. J. McInerney, C. R. Woese, R. S. Tanner, Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. Int. J. Syst. Bacteriol. 1999, 49, 953.
| Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVyqsbw%3D&md5=53922aae6bb6d59be8804889564a8f5dCAS | 10425750PubMed |
[62] J. G. Zeikus, P. W. Hegge, T. E. Thompson, T. J. Phelps, T. A. Langworthy, Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Curr. Microbiol. 1983, 9, 225.
| Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkvVaitA%3D%3D&md5=b70dae61169dc41cf829e0fd56c69e37CAS |