Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Recalcitrant pharmaceuticals in the aquatic environment: a comparative screening study of their occurrence, formation of phototransformation products and their in vitro toxicity

Marlies Bergheim A B F , Richard Gminski A , Bernd Spangenberg C , Malgorzata Dębiak D , Alexander Bürkle D , Volker Mersch-Sundermann A , Klaus Kümmerer A E and Reto Gieré B
+ Author Affiliations
- Author Affiliations

A University Medical Center Freiburg, Department of Environmental Health Sciences, Section of Toxicology, Breisacher Strasse 115B, D-79106 Freiburg, Germany. Email: richard.gminski@uniklinik-freiburg.de; volker.mersch-sundermann@uniklinik-freiburg.de

B Institute of Earth and Environmental Sciences, University of Freiburg, Albertstrasse 23b, D-79104 Freiburg, Germany. Email: giere@uni-freiburg.de

C University of Applied Sciences, Process Engineering and Environmental Technologies, Badstrasse 24, D-77652 Offenburg, Germany. Email: spangenberg@hs-offenburg.de

D Molecular Toxicology Group, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany. Email: alexander.buerkle@uni-konstanz.de; debiakma@yahoo.com

E Present address: Leuphana University Lüneburg, Institute of Sustainable and Environmental Chemistry, Scharnhorststraße 1/C13, D-21335 Lueneburg, Germany. Email: klaus.kuemmerer@uni.leuphana.de

F Corresponding author. Email: marlies.bergheim@gmail.com

Environmental Chemistry 11(4) 431-444 https://doi.org/10.1071/EN13218
Submitted: 1 December 2013  Accepted: 9 April 2014   Published: 11 July 2014

Journal Compilation © CSIRO Publishing 2014 Open Access CC BY-NC-ND

Environmental context. Many pharmaceuticals on the market have not undergone detailed evaluation for potential aquatic toxicity. We found that most tested pharmaceuticals were persistent, that phototransformation products were likely to be formed as a result of UV treatment of wastewater and that some transformation products were more toxic to bacteria than their precursor pharmaceutical compound. Thus UV treatment of wastewater does not seem appropriate to completely degrade or transform micropollutants into harmless compounds.

Abstract. Data allowing for a complete environmental risk assessment of pharmaceuticals and their photoderatives in the environment are still scarce. In the present study, in vitro toxicity and both bio- and photopersistence of various pharmaceuticals (aciclovir, allopurinol, cetirizine, cimetidine, fluconazole, hydrochlorothiazide, lisinopril, phenytoin, primidone, ranitidine, sotalol, sulpiride, tramadol and valsartane) as well as their phototransformation products were evaluated in order to fill data gaps and to help prioritise them for further testing. Twelve out of the fourteen compounds investigated were found to be neither readily nor inherently biodegradable in the Organisation of Economic Cooperation and Development-biodegradability tests. The study further demonstrates that the photo-induced transformation of the pharmaceuticals was faster upon irradiation with a Hg lamp (UV light) than with a Xe lamp emitting a spectrum that mimics sunlight. Comparing the non-irradiated with the respective irradiated solutions, a higher acute and chronic toxicity against bacteria was found for the irradiated solutions of seven compounds (cetirizine, cimetidine, hydrochlorothiazide, ranitidine, sulpiride, tramadol and valsartane). No cyto- and genotoxic effects were found in human cervical (HeLa) and liver (Hep-G2) cells for any of the investigated compounds or their phototransformation products. This comparative study documents that phototransformation products can arise as a result of UV treatment of wastewater containing these pharmaceuticals. It further demonstrates that some phototransformation products may have a higher environmental risk potential than the respective parent compounds because some phototransformation products exhibited a higher bacterial toxicity.

Additional keywords: biodegradation, HeLa cells, Hep-G2 cells, irradiation, predicted environmental concentrations (PECs), UV, Vibrio fischeri.


References

[1]  T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett. 2002, 131, 5.
Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Wju7s%3D&md5=a335a869c3b031f0332ffad3862d71a6CAS | 11988354PubMed |

[2]  A Comprehensive Literature Review: Monitoring Data on the Occurrence of Pharmaceuticals in the Environment from the German Federal Environmental Agency (UBA) 2011 (German Federal Environmental Agency: Dessau-Rosßlau).

[3]  R. Loos, B. M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, G. Bidoglio, EU-wide survey of polar organic persistent pollutants in European river waters. Environ. Pollut. 2009, 157, 561.
EU-wide survey of polar organic persistent pollutants in European river waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOisLnF&md5=04507916b89297d128f196d774fd5da5CAS | 18952330PubMed |

[4]  P. Bottoni, S. Caroli, A. Caracciolo, Pharmaceuticals as priority water contaminants. Toxicol. Environ. Chem. 2010, 92, 549.
Pharmaceuticals as priority water contaminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1Wjsr0%3D&md5=308aeec013b1dfc0f2c5ed7c21b877d1CAS |

[5]  J. B. Quintana, S. Weiss, T. Reemtsma, Pathway’s and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res. 2005, 39, 2654.
Pathway’s and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvV2hsbY%3D&md5=de6e773c7cc4266f7a3fd956ad3f47e1CAS | 15979124PubMed |

[6]  C. Zwiener, S. Seeger, T. Glauner, F. H. Frimmel, Metabolites from the biodegradation of pharmaceutical residues of ibuprofen in biofilm reactors and batch experiments. Anal. Bioanal. Chem. 2002, 372, 569.
Metabolites from the biodegradation of pharmaceutical residues of ibuprofen in biofilm reactors and batch experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivValu70%3D&md5=100ba268680eb9df76e8fee1475aad6dCAS | 11939633PubMed |

[7]  M. Addamo, V. Augugliaro, A. Di Paola, E. Garcia-Lopez, V. Loddo, G. Marci, L. Palmisano, Removal of drugs in aqueous systems by photoassisted degradation. J. Appl. Electrochem. 2005, 35, 765.
Removal of drugs in aqueous systems by photoassisted degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFSqsLY%3D&md5=91bb77069ab4319d861b81626bb92734CAS |

[8]  A. L. Boreen, W. A. Arnold, K. McNeill, Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups. Environ. Sci. Technol. 2004, 38, 3933.
Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvVGgtLk%3D&md5=0435b606b8c37af4fead3cede3587a1dCAS | 15298203PubMed |

[9]  R. Skibiński, Identification of photodegradation product of amisulpride by ultra-high-pressure liquid chromatography-DAD/ESI-quadrupole time-of-flight-mass spectrometry. J. Pharmaceut. Biomed. 2011, 56, 904.
Identification of photodegradation product of amisulpride by ultra-high-pressure liquid chromatography-DAD/ESI-quadrupole time-of-flight-mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

[10]  C. Sirtori, A. Aguera, W. Gernjak, S. Malato, Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Res. 2010, 44, 2735.
Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFGrtbc%3D&md5=54d3a54f060cf84c830625b2f36849adCAS | 20206373PubMed |

[11]  S. K. Khetan, T. J. Collins, Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem. Rev. 2007, 107, 2319.
Human pharmaceuticals in the aquatic environment: a challenge to green chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVelsrg%3D&md5=d1cd15d8d0309c6b326563f527be49f5CAS | 17530905PubMed |

[12]  W. d. Püttmann, F. Keil, J. Oehlmann, U. Schulte-Oehlmann, Strategy to reduce pharmaceuticals in drinking water – technical approach. Wassertechnische Strategien zur Reduzierung der Trinkwasserbehandlung durch Arzneimittelwirkstoffe 2008, 20, 209.

[13]  M. J. Gómez, C. Sirtori, M. Mezcua, A. R. Fernández-Alba, A. Agüera, Photodegradation study of three dipyrone metabolites in various water systems: identification and toxicity of their photodegradation products. Water Res. 2008, 42, 2698.
Photodegradation study of three dipyrone metabolites in various water systems: identification and toxicity of their photodegradation products.Crossref | GoogleScholarGoogle Scholar | 18294672PubMed |

[14]  M. Isidori, A. Parrella, P. Pistillo, F. Temussi, Effects of ranitidine and its photoderivatives in the aquatic environment. Environ. Int. 2009, 35, 821.
Effects of ranitidine and its photoderivatives in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsl2gtL8%3D&md5=4050f142f61b93c444ab0a0cc2ec6e38CAS | 19135254PubMed |

[15]  Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use 2006 (European Medical Agency: Brussels).

[16]  M. Bergheim, R. Gieré, K. Kümmerer, Biodegradability and ecotoxicity of tramadol, ranitidine, and their photoderivatives in the aquatic environment. Environ. Sci. Pollut. R. 2012, 19, 72.
Biodegradability and ecotoxicity of tramadol, ranitidine, and their photoderivatives in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVaitg%3D%3D&md5=0fd2e011f7098bfca3dc46698f6fce63CAS |

[17]  U. Schwabe, D. Paffrath, Pharmaceutical Prescriptions in Germany 2011 2010 (Springer: Berlin).

[18]  A. Seigel, A. Schroeck, R. Hauser, B. Spangenberg, Sensitive quantification of Diclofenac and Ibuprofen using thin layer chromatography coupled with a Vibrio fisheri bioluminescence Assay. J. Liq. Chromatogr. R. T. 2011, 34, 817.
Sensitive quantification of Diclofenac and Ibuprofen using thin layer chromatography coupled with a Vibrio fisheri bioluminescence Assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1ymt74%3D&md5=59a06960fcecd3e3df3c7b15fb68d4c8CAS |

[19]  G. Repetto, A. del Peso, J. L. Zurita, Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125.
Neutral red uptake assay for the estimation of cell viability/cytotoxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFakurk%3D&md5=ed01af59fd0eba28eb4b45457646225eCAS | 18600217PubMed |

[20]  M. Moreno-Villanueva, R. Pfeiffer, T. Sindlinger, A. Leake, M. Müller, T. B. Kirkwood, A. Bürkle, A modified and automated version of the ‘fluorimetric detection of alkaline DNA unwinding’ method to quantify formation and repair of DNA strand breaks. BMC Biotechnol. 2009, 9, 39.
A modified and automated version of the ‘fluorimetric detection of alkaline DNA unwinding’ method to quantify formation and repair of DNA strand breaks.Crossref | GoogleScholarGoogle Scholar | 19389244PubMed |

[21]  M. Moreno-Villanueva, T. Eltze, D. Dressler, J. Bernhardt, C. Hirsch, P. Wick, G. von Scheven, K. Lex, A. Bürkle, The automated FADU-assay, a potential high-throughput in vitro method for early screening of DNA breakage. ALTEX 2011, 28, 295.
The automated FADU-assay, a potential high-throughput in vitro method for early screening of DNA breakage.Crossref | GoogleScholarGoogle Scholar | 22130482PubMed |

[22]  M. Dębiak, A. Panas, D. Steinritz, K. Kehe, A. Bürkle, High-throughput analysis of DNA interstrand crosslinks in human peripheral blood mononuclear cells by automated reverse FADU assay. Toxicology 2011, 280, 53.
High-throughput analysis of DNA interstrand crosslinks in human peripheral blood mononuclear cells by automated reverse FADU assay.Crossref | GoogleScholarGoogle Scholar | 21115096PubMed |

[23]  J. Durner, M. Dębiak, A. Bürkle, R. Hickel, F.-X. Reichl, Induction of DNA strand breaks by dental composite components compared to X-ray exposure in human gingival fibroblasts. Arch. Toxicol. 2011, 85, 143.
Induction of DNA strand breaks by dental composite components compared to X-ray exposure in human gingival fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlamtLg%3D&md5=4e16bfebce9d530254daac9713f6afa3CAS | 20490463PubMed |

[24]  M. Gros, M. Petrovic, D. Barcelo, Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/quadrupole-linear ion trap mass spectrometry and automated library searching. Anal. Chem. 2009, 81, 898.
Tracing pharmaceutical residues of different therapeutic classes in environmental waters by using liquid chromatography/quadrupole-linear ion trap mass spectrometry and automated library searching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCmtLfE&md5=4f4f34c9c36ff2c4a7cfd5b6923e59c3CAS | 19113952PubMed |

[25]  N. M. Vieno, H. Harkki, T. Tuhkanen, L. Kronberg, Occurrence of pharmaceuticals in river water and their elimination a pilot-scale drinking water treatment plant. Environ. Sci. Technol. 2007, 41, 5077.
Occurrence of pharmaceuticals in river water and their elimination a pilot-scale drinking water treatment plant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVajtbc%3D&md5=7f04bbb0588fe1508a3259ac2470d95cCAS | 17711226PubMed |

[26]  A. Y. C. Lin, T. H. Yu, C. F. Lin, Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 2008, 74, 131.
Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlylurnJ&md5=e938e0f50362fc7c7d64b0c281b4c41eCAS |

[27]  D. Fatta-Kassinos, M. I. Vasquez, K. Kümmerer, Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere 2011, 85, 693.
Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – degradation, elucidation of byproducts and assessment of their biological potency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVehsbvL&md5=976514a39065a5f986dd2be2f01d1e37CAS | 21835425PubMed |

[28]  M. DellaGreca, M. R. Lesce, M. Isidori, S. Montanaro, L. Previtera, M. Rubino, Phototransformation of amlodipine in aqueous solution: toxicity of the drug and its photoproduct on aquatic organisms. Int. J. Photoenergy 2007, 2007, 63 459.
Phototransformation of amlodipine in aqueous solution: toxicity of the drug and its photoproduct on aquatic organisms.Crossref | GoogleScholarGoogle Scholar |

[29]  D. M. Leech, M. T. Snyder, R. G. Wetzel, Natural organic matter and sunlight accelerate the degradation of 17 beta-estradiol in water. Sci. Total Environ. 2009, 407, 2087.
Natural organic matter and sunlight accelerate the degradation of 17 beta-estradiol in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Sjtb4%3D&md5=29f854e11dde962efb92bec93816462cCAS | 19118869PubMed |

[30]  D. E. Latch, B. L. Stender, J. L. Packer, W. A. Arnold, K. McNeill, Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine. Environ. Sci. Technol. 2003, 37, 3342.
Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFyjsrw%3D&md5=304286b8ee7cef88ee3b68125207df9aCAS | 12966980PubMed |

[31]  Y. Kim, K. Choi, J. Jung, S. Park, P. G. Kim, J. Park, Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ. Int. 2007, 33, 370.
Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKmurg%3D&md5=5a2f6bd1e425dc225a957f7907c952f5CAS | 17223195PubMed |

[32]  R. M. Bianchini, P. M. Castellano, T. S. Kaufman, Characterization of two new potential impurities of Valsartan obtained under photodegradation stress condition. J. Pharm. Biomed. Anal. 2011, 56, 16.
Characterization of two new potential impurities of Valsartan obtained under photodegradation stress condition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVyltL4%3D&md5=8c7cf9f151f90b6659c4de29d448e610CAS | 21592713PubMed |

[33]  I. Vaz-Moreira, O. C. Nunes, C. M. Manaia, Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci. Total Environ. 2012, 426, 366.
Diversity and antibiotic resistance in Pseudomonas spp. from drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFSjtbw%3D&md5=05b790d4513c6eb9faecd581f756cf9cCAS | 22521167PubMed |

[34]  N. J. Palleroni, The Pseudomonas story. Environ. Microbiol. 2010, 12, 1377.
The Pseudomonas story.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFOhu74%3D&md5=a326c7fa8f744101af60e7aa67f94203CAS | 20553550PubMed |

[35]  G. Neumann, Y. Veeranagouda, T. B. Karegoudar, O. Sahin, I. Mausezahl, N. Kabelitz, U. Kappelmeyer, H. J. Heipieper, Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 2005, 9, 163.
Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlKqtbk%3D&md5=fa428ec87c77d1d49e1da32ca78b1ca9CAS | 15765202PubMed |

[36]  M. Vodovnik, M. Bistan, M. Zorec, R. M. Logar, Membrane changes associated with exposure of Pseudomonas putida to selected environmental pollutants and their possible roles in toxicity. Acta Chim. Slov. 2012, 59, 83.
| 1:CAS:528:DC%2BC38Xlt1alsrY%3D&md5=34cb540b1193a05c40661ced3bd36badCAS | 24061176PubMed |

[37]  OECD Guideline for testing of chemicals: In vitro 3T3 NRU phototoxicity test 2004 (Organisation of Economic Cooperation and Development: Paris).

[38]  K. D. Han, K. M. Bark, E. P. Heo, J. K. Lee, J. S. Kang, T. H. Kim, Increased phototoxicity of hydrochlorothiazide by photodegradation. Photodermatol. Photo. 2000, 16, 121.
Increased phototoxicity of hydrochlorothiazide by photodegradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksF2qurY%3D&md5=b04e3fa654bd4f5f41dfb8c61efa3098CAS |

[39]  A. A. Chételat, S. Albertini, E. Gocke, The photomutagenicity of fluoroquinolones in tests for gene mutation, chromosomal aberration, gene conversion and DNA breakage (Comet assay). Mutagenesis 1996, 11, 497.
The photomutagenicity of fluoroquinolones in tests for gene mutation, chromosomal aberration, gene conversion and DNA breakage (Comet assay).Crossref | GoogleScholarGoogle Scholar | 8921512PubMed |

[40]  K. Yu, B. Li, T. Zhang, Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography–tandem mass spectrometry without SPE pre-concentration. Anal. Chim. Acta 2012, 738, 59.
Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography–tandem mass spectrometry without SPE pre-concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Kmt7k%3D&md5=eab08d44e56993fe8364379b1e7a5accCAS | 22790701PubMed |

[41]  J. Fick, H. Soderstrom, R. H. Lindberg, C. Phan, M. Tysklind, D. G. J. Larsson, Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 2009, 28, 2522.
Contamination of surface, ground, and drinking water from pharmaceutical production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7bI&md5=8ea48cee25d7165aab4c2d1f8ad46cebCAS | 19449981PubMed |

[42]  J. Kosonen, L. Kronberg, The occurrence of antihistamines in sewage waters and in recipient rivers. Environ. Sci. Pollut. R. 2009, 16, 555.
The occurrence of antihistamines in sewage waters and in recipient rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1Cjtr8%3D&md5=e500ed9fffe2d2a4821de90c1b77d2acCAS |

[43]  B. Kasprzyk-Hordern, R. M. Dinsdale, A. J. Guwy, The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363.
The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Wkug%3D%3D&md5=52c394b51f3f956276ac17929c5f9570CAS | 19022470PubMed |

[44]  K. Choi, Y. Kim, J. Park, C. K. Park, M. Kim, H. S. Kim, P. Kim, Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Sci. Total Environ. 2008, 405, 120.
Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOjurrF&md5=045bebd20245444c023eeed637b3290fCAS | 18684486PubMed |

[45]  D. W. Kolpin, E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, H. T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202.
Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslOitLg%3D&md5=57329dcacf84659eb3f2f1ed1da4126aCAS | 11944670PubMed |

[46]  J. W. Kim, H. S. Jang, J. G. Kim, H. Ishibashi, M. Hirano, K. Nasu, N. Ichikawa, Y. Takao, R. Shinohara, K. Arizono, Occurrence of pharmaceutical and personal care products (PPCPs. in surface water from Mankyung River, South Korea. J. Health Sci. 2009, 55, 249.
Occurrence of pharmaceutical and personal care products (PPCPs. in surface water from Mankyung River, South Korea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1yku7g%3D&md5=477c31e8b24ea49404bdd0b82429a779CAS |

[47]  H. Lindberg, J. Fick, M. Tysklind, Screening of antimycotics in Swedish sewage treatment plants – waters and sludge. Water Res. 2010, 44, 649.
Screening of antimycotics in Swedish sewage treatment plants – waters and sludge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFegsLo%3D&md5=659b8373d67936c43e5c1ed330842310CAS |

[48]  M. Kahle, I. J. Buerge, A. Hauser, M. D. Mueller, T. Poiger, Azole fungicides: occurrence and fate in wastewater and surface waters. Environ. Sci. Technol. 2008, 42, 7193.
Azole fungicides: occurrence and fate in wastewater and surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVems77L&md5=efbbbf75bc31da2939824df48ef3f478CAS | 18939546PubMed |

[49]  D. Calamari, E. Zuccato, S. Castiglioni, R. Bagnati, R. Fanelli, Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environ. Sci. Technol. 2003, 37, 1241.
Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlCjur4%3D&md5=6445416a8f0e7003bd8b00236a3e3fbbCAS |

[50]  E. Zuccato, S. Castiglioni, R. Fanelli, G. Reitano, R. Bagnati, C. Chiabrando, F. Pomati, C. Rossetti, D. Calamari, Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control. Environ. Sci. Pollut. R. 2006, 13, 15.
Pharmaceuticals in the environment in Italy: causes, occurrence, effects and control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1GnsA%3D%3D&md5=e859b05b51712a89afde29d0eed003ffCAS |

[51]  T. Heberer, Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. 2002, 266, 175.
Tracking persistent pharmaceutical residues from municipal sewage to drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFyjur0%3D&md5=6ba934c364dfe957a1fbebd3dd7d3985CAS |

[52]  M. J. Benotti, R. A. Trenholm, B. J. Vanderford, J. C. Holady, B. D. Stanford, S. A. Snyder, Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol. 2009, 43, 597.
Pharmaceuticals and endocrine disrupting compounds in US drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSqsLjM&md5=3b863378ee80774ba89fb0fbeba08984CAS | 19244989PubMed |

[53]  G. M. Bruce, R. C. Pleus, S. A. Snyder, Toxicological relevance of pharmaceuticals in drinking water. Environ. Sci. Technol. 2010, 44, 5619.
Toxicological relevance of pharmaceuticals in drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFGntLc%3D&md5=bf449e6faefc1836b6c4a4b84a44ec56CAS | 20575537PubMed |

[54]  D. Hummel, D. Loeffler, G. Fink, T. A. Ternes, Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry. Environ. Sci. Technol. 2006, 40, 7321.
Simultaneous determination of psychoactive drugs and their metabolites in aqueous matrices by liquid chromatography mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ChsLvK&md5=88c4161c20370719e807e91e08486df8CAS | 17180984PubMed |

[55]  B. Morasch, F. Bonvin, H. Reiser, D. Grandjean, L. F. de Alencastro, C. Perazzolo, N. Chevre, T. Kohn, Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part II: micropollutant removal between wastewater and raw drinking water. Environ. Toxicol. Chem. 2010, 2259, 1658.

[56]  Y. C. Guo, S. W. Krasner, Occurrence of primidone, carbamazepine, caffeine, and precursors for n-nitrosodimethylamine in drinking water sources impacted by wastewater. J. Am. Water Resour. Assoc. 2009, 45, 58.
Occurrence of primidone, carbamazepine, caffeine, and precursors for n-nitrosodimethylamine in drinking water sources impacted by wastewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1CgsLc%3D&md5=a3f36b270c277eb1bf5e2806b580c2e2CAS |

[57]  S. Castiglioni, R. Fanelli, D. Calamari, R. Bagnati, E. Zuccato, Methodological approaches for studying pharmaceuticals in the environment by comparing predicted and measured concentrations in River Po, Italy. Regul. Toxicol. Pharmacol. 2004, 39, 25.
Methodological approaches for studying pharmaceuticals in the environment by comparing predicted and measured concentrations in River Po, Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVOguw%3D%3D&md5=278d8438c51bb05b57635ffe911848efCAS | 14746777PubMed |

[58]  J. Fick, R. H. Lindberg, L. Kai, E. Brorstoem-Lundén, Results from the Swedish National Screening programme 2010 2011 (IVL Swedish Environmental Research Institute: Stockholm, Sweden).

[59]  H. D. Zhou, C. Y. Wu, X. Huang, M. J. Gao, X. H. Wen, H. Tsuno, H. Tanaka, Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China. Water Environ. Res. 2010, 82, 2239.
Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCit7jN&md5=e0c35c35e5c3bf2ec3e1698d3ca1c039CAS |

[60]  T. Okuda, Y. Kobayashi, R. Nagao, N. Yamashita, H. Tanaka, S. Tanaka, S. Fujii, C. Konishi, I. Houwa, Removal efficiency of 66 pharmaceuticals during wastewater treatment process in Japan. Water Sci. Technol. 2008, 57, 65.
Removal efficiency of 66 pharmaceuticals during wastewater treatment process in Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivVOrtbw%3D&md5=24f7dcd9f752b02b1d35823b8cb49b9aCAS | 18192742PubMed |