Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Nanoparticle core properties affect attachment of macromolecule-coated nanoparticles to silica surfaces

Ernest M. Hotze A B , Stacey M. Louie A B , Shihong Lin A C , Mark R. Wiesner A C and Gregory V. Lowry A B D
+ Author Affiliations
- Author Affiliations

A Center for Environmental Implications of NanoTechnology (CEINT), PO Box 90287, Duke University, Durham, NC 27708-0287, USA.

B Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

C Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Box 90287, Durham, NC 27708-0287, USA.

D Corresponding author. Email: glowry@andrew.cmu.edu

Environmental Chemistry 11(3) 257-267 https://doi.org/10.1071/EN13191
Submitted: 22 October 2013  Accepted: 15 February 2014   Published: 5 June 2014

Environmental context. The increasing use of engineered nanoparticles has led to concerns over potential exposure to these novel materials. Predictions of nanoparticle transport in the environment and exposure risks could be simplified if all nanoparticles showed similar deposition behaviour when coated with macromolecules used in production or encountered in the environment. We show, however, that each nanoparticle in this study exhibited distinct deposition behaviour even when coated, and hence risk assessments may need to be specifically tailored to each type of nanoparticle.

Abstract. Transport, toxicity, and therefore risks of engineered nanoparticles (ENPs) are unquestionably tied to interactions between those particles and surfaces. In this study, we proposed the simple and untested hypothesis that coating type can be the predominant factor affecting attachment of ENPs to silica surfaces across a range of ENP and coating types, effectively masking the contribution of the particle core to deposition behaviour. To test this hypothesis, TiO2, Ag0 and C60 nanoparticles with either no coating or one of three types of adsorbed macromolecules (poly(acrylic acid), humic acid and bovine serum albumin) were prepared. The particle size and adsorbed layer thicknesses were characterised using dynamic light scattering and soft particle electrokinetic modelling. The attachment efficiencies of the nanoparticles to silica surfaces (glass beads) were measured in column experiments and compared with predictions from a semi-empirical correlation between attachment efficiency and coated particle properties that included particle size and layer thickness. For the nanoparticles and adsorbed macromolecules in this study, the attachment efficiencies could not be explained solely by the coating type. Therefore, the hypothesis that adsorbed macromolecules will mask the particle core and control attachment was disproved, and information on the properties of both the nanoparticle surface (e.g. charge and hydrophobicity) and adsorbed macromolecule (e.g. molecular weight, charge density extended layer thickness) will be required to explain or predict interactions of coated nanoparticles with surfaces in the environment.


References

[1]  M. Wiesner, J.-Y. Bottero, Environmental Nanotechnology: Applications and Impacts of Nanomaterials 2007 (McGraw-Hill: New York).

[2]  M. R. Wiesner, G. V. Lowry, K. L. Jones, M. F. Hochella, R. T. Di Giulio, E. Casman, E. S. Bernhardt, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009, 43, 6458.
Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFCiur0%3D&md5=0886f221938034ce9537d754f6700ef7CAS | 19764202PubMed |

[3]  E. M. Hotze, T. Phenrat, G. V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909.
Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKlu7zI&md5=920b07f4a5df0e8b01da1337ad4a5016CAS | 21284288PubMed |

[4]  A. R. Petosa, D. P. Jaisi, I. R. Quevedo, M. Elimelech, N. Tufenkji, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532.
Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSgt7g%3D&md5=bba98cf747b566481721a2b580709409CAS | 20687602PubMed |

[5]  A. Tiraferri, R. Sethi, Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J. Nanopart. Res. 2009, 11, 635.
Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVGhtLo%3D&md5=05c39ff9d0917f5ed41d22bd59417ee9CAS |

[6]  F. He, M. Zhang, T. W. Qian, D. Y. Zhao, Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. J. Colloid Interface Sci. 2009, 334, 96.
Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1egtbY%3D&md5=976fa4b251fba200420f8b739f600d35CAS | 19383562PubMed |

[7]  J. E. Song, T. Phenrat, S. Marinakos, Y. Xiao, J. Liu, M. R. Wiesner, R. D. Tilton, G. V. Lowry, Hydrophobic interactions increase attachment of gum arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ. Sci. Technol. 2011, 45, 5988.
Hydrophobic interactions increase attachment of gum arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVKitbk%3D&md5=c28f3fada5a0849680f9bc04308663b3CAS | 21692483PubMed |

[8]  M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101.
Emerging applications of stimuli-responsive polymer materials.Crossref | GoogleScholarGoogle Scholar |

[9]  D. Walczyk, F. B. Bombelli, M. P. Monopoli, I. Lynch, K. A. Dawson, What the cell ‘sees’ in bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761.
What the cell ‘sees’ in bionanoscience.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFeks78%3D&md5=c890ecc0ce60fb509647ed26cf3cd4efCAS | 20356039PubMed |

[10]  Y. G. Wang, Y. S. Li, J. D. Fortner, J. B. Hughes, L. M. Abriola, K. D. Pennell, Transport and retention of nanoscale C60 aggregates in water-saturated porous media. Environ. Sci. Technol. 2008, 42, 3588.
Transport and retention of nanoscale C60 aggregates in water-saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFaku7c%3D&md5=3d1e62742169dd69c7dec95a0dfdc02fCAS |

[11]  Y. S. Li, Y. G. Wang, K. D. Pennell, L. M. Abriola, Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ. Sci. Technol. 2008, 42, 7174.
Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVaru7jO&md5=19b5e7c23c8961127c548e6e1df1d7baCAS |

[12]  B. Espinasse, E. M. Hotze, M. R. Wiesner, Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method. Environ. Sci. Technol. 2007, 41, 7396.
Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFagtbzI&md5=cc166db928afe51a6ece6fcecbd6c121CAS | 18044517PubMed |

[13]  S. H. Lin, Y. W. Cheng, Y. Bobcombe, K. L. Jones, J. Liu, M. R. Wiesner, Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis. Environ. Sci. Technol. 2011, 45, 5209.
Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFCnsLY%3D&md5=df62512d9038f22a1eaa6b1c20bad59bCAS |

[14]  I. G. Godinez, C. J. G. Darnault, Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Res. 2011, 45, 839.
Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Sqsr3L&md5=88063fef48eed3419d24730c0c572c3eCAS | 20947120PubMed |

[15]  N. Solovitch, J. Labille, J. Rose, P. Chaurand, D. Borschneck, M. R. Wiesner, J. Y. Bottero, Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ. Sci. Technol. 2010, 44, 4897.
Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFKmu7s%3D&md5=bccf704c96f252cc366f2e7c057b87e3CAS | 20524647PubMed |

[16]  X. Y. Liu, M. Wazne, T. M. Chou, R. Xiao, S. Y. Xu, Influence of Ca2+ and Suwannee River Humic Acid on aggregation of silicon nanoparticles in aqueous media. Water Res. 2011, 45, 105.
Influence of Ca2+ and Suwannee River Humic Acid on aggregation of silicon nanoparticles in aqueous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSqtbvO&md5=5a0d5c19bb9cd3bf6a0370a7ba1692caCAS |

[17]  B. Uyusur, C. J. G. Darnault, P. T. Snee, E. Koken, A. R. Jacobson, R. R. Wells, Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. J. Contam. Hydrol. 2010, 118, 184.
Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWjsLnM&md5=e2550be4590c65844c3afd73fa8067faCAS | 21056511PubMed |

[18]  X. Y. Liu, D. M. O’Carroll, E. J. Petersen, Q. G. Huang, C. L. Anderson, Mobility of multiwalled carbon nanotubes in porous media. Environ. Sci. Technol. 2009, 43, 8153.
Mobility of multiwalled carbon nanotubes in porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amtrbM&md5=7020d9a80a415f5e72d18109b63fbc8dCAS |

[19]  Z. Li, E. Sahle-Demessie, A. A. Hassan, G. A. Sorial, Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res. 2011, 45, 4409.
Transport and deposition of CeO2 nanoparticles in water-saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1altLw%3D&md5=abee7d69591d96956a2dd6f6d00bc106CAS | 21708395PubMed |

[20]  K. M. Sirk, N. B. Saleh, T. Phenrat, H. J. Kim, B. Dufour, J. Ok, P. L. Golas, K. Matyjaszewski, G. V. Lowry, R. D. Tilton, Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ. Sci. Technol. 2009, 43, 3803.
Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2gsL8%3D&md5=a0f3ae2813093c3cc99e226e8cbbcf96CAS | 19544891PubMed |

[21]  X. J. Jiang, M. P. Tong, H. Y. Li, K. Yang, Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces. J. Colloid Interface Sci. 2010, 350, 427.
Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGisbfJ&md5=85a5c1785d63e0dc9f48125016bdea8bCAS |

[22]  P. Yi, K. L. Chen, Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. Langmuir 2011, 27, 3588.
Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFWltbY%3D&md5=5044c7a65c74da0fa4bbab73ac4f18cfCAS | 21355574PubMed |

[23]  K. L. Chen, M. Elimelech, Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ. Sci. Technol. 2009, 43, 7270.
Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFOltr0%3D&md5=b419125a37caf08d915a4ef2bca853f3CAS | 19848133PubMed |

[24]  B. Smith, K. Wepasnick, K. E. Schrote, A. H. Bertele, W. P. Ball, C. O’Melia, D. H. Fairbrother, Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environ. Sci. Technol. 2009, 43, 819.
Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCltL7M&md5=91bd3e1d81b0adde5759ca3da6c16db4CAS | 19245021PubMed |

[25]  T. Phenrat, N. Saleh, K. Sirk, H. J. Kim, R. D. Tilton, G. V. Lowry, Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J. Nanopart. Res. 2008, 10, 795.
Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFajtrg%3D&md5=5e68b8f18322d154f76fd378da4f571cCAS |

[26]  S. H. Brewer, W. R. Glomm, M. C. Johnson, M. K. Knag, S. Franzen, Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 2005, 21, 9303.
Probing BSA binding to citrate-coated gold nanoparticles and surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1Cmu7w%3D&md5=e11a630c67e2fb5567541e48178cc622CAS | 16171365PubMed |

[27]  S. M. Louie, R. D. Tilton, G. V. Lowry, Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environ. Sci. Technol. 2013, 47, 4245.
Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFCjtb8%3D&md5=15bb87cd98587338b45001fe740f319eCAS | 23550560PubMed |

[28]  I. Chowdhury, D. M. Cwiertny, S. L. Walker, Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ. Sci. Technol. 2012, 46, 6968.
Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1OmsLk%3D&md5=46cda7c713b7801683c21774d57fe1caCAS | 22455349PubMed |

[29]  X. Y. Liu, M. Wazne, Y. Han, C. Christodoulatos, K. L. Jasinkiewicz, Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes. J. Colloid Interface Sci. 2010, 348, 101.
Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFOjt7c%3D&md5=a5f0c132f0eadfb9f92466b9c58bb967CAS |

[30]  A. Hitchman, G. H. S. Smith, Y. Ju-Nam, M. Sterling, J. R. Lead, The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 2013, 90, 410.
The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlamu7jK&md5=2dc508887987b5d1dd2586fed33417edCAS | 22967928PubMed |

[31]  G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
Transformations of nanomaterials in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFajtbs%3D&md5=ffe75c0f5fd3c0eb997ff49828357fb0CAS | 22582927PubMed |

[32]  D. P. Stankus, S. E. Lohse, J. E. Hutchison, J. A. Nason, Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ. Sci. Technol. 2011, 45, 3238.
Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqtr%2FF&md5=014ab5a691d217b2dc68d683d4946eedCAS | 21162562PubMed |

[33]  B. Smith, J. Yang, J. L. Bitter, W. P. Ball, D. H. Fairbrother, Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter. Environ. Sci. Technol. 2012, 46, 12 839.
Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Gns7nP&md5=893282770e712a717d849d851840b98dCAS |

[34]  J. F. Liu, S. Legros, F. Von der Kammer, T. Hofmann, Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. Environ. Sci. Technol. 2013, 47, 4113.
Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVGmu70%3D&md5=af57017f20142369469c73852851d304CAS |

[35]  B. Derjaguin, A theory of interaction of particles in presence of electric double-layers and the stability of lyophobe colloids and disperse systems. Prog. Surf. Sci. 1993, 43, 1.
A theory of interaction of particles in presence of electric double-layers and the stability of lyophobe colloids and disperse systems.Crossref | GoogleScholarGoogle Scholar |

[36]  E. J. W. Verwey, J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids 1948 (Elsevier: Amsterdam).

[37]  B. Vincent, P. F. Luckham, F. A. Waite, Effect of free polymer on the stability of sterically stabilized dispersions. J. Colloid Interface Sci. 1980, 73, 508.
Effect of free polymer on the stability of sterically stabilized dispersions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhsVOgu70%3D&md5=9b34704351439cf2a2ceb8778b1f3399CAS |

[38]  T. Phenrat, J. E. Song, C. M. Cisneros, D. P. Schoenfelder, R. D. Tilton, G. V. Lowry, Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ. Sci. Technol. 2010, 44, 4531.
Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVSgtr4%3D&md5=c33ef577520d17d75aac4b4956ed537dCAS | 20465214PubMed |

[39]  J. L. Ortega-Vinuesa, A. Martin-Rodriguez, R. H. Hidalgo-Alvarez, Colloidal stability of polymer colloids with different interfacial properties: mechanisms. J. Colloid Interface Sci. 1996, 184, 259.
Colloidal stability of polymer colloids with different interfacial properties: mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFOhu7s%3D&md5=2b9d42d52aaec8b31c78cf361c3dd98eCAS | 8954662PubMed |

[40]  H. Ohshima, Electrophoresis of soft particles. Adv. Colloid Interfac. 1995, 62, 189.
Electrophoresis of soft particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslGrsb8%3D&md5=a057a0fd5970d33558da0a0e39a70f53CAS |

[41]  R. J. Hill, D. A. Saville, W. B. Russel, Electrophoresis of spherical polymer-coated colloidal particles. J. Colloid Interface Sci. 2003, 258, 56.
Electrophoresis of spherical polymer-coated colloidal particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlGqtLk%3D&md5=78dee1cf4c7d6f412cf632b3abf08186CAS |

[42]  J. F. L. Duval, H. Ohshima, Electrophoresis of diffuse soft particles. Langmuir 2006, 22, 3533.
Electrophoresis of diffuse soft particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Oks7s%3D&md5=bf200b8cd0736a5a298042ad3a361f60CAS |

[43]  S. H. Lin, M. R. Wiesner, Theoretical investigation on the interaction between a soft particle and a rigid surface. Chem. Eng. J. 2012, 191, 297.
Theoretical investigation on the interaction between a soft particle and a rigid surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFyqsbo%3D&md5=ef6e3e178059cfc2635ec8f8e0e3b76fCAS |

[44]  S. M. Louie, T. Phenrat, M. J. Small, R. D. Tilton, G. V. Lowry, Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids. Langmuir 2012, 28, 10 334.
Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslGit78%3D&md5=0072c718cdfe72b3d261b6cd103a9a55CAS |

[45]  M. Borkovec, I. Szilagyi, I. Popa, M. Finessi, P. Sinha, P. Maroni, G. Papastavrou, Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique. Adv. Colloid Interfac. 2012, 179–182, 85.
Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique.Crossref | GoogleScholarGoogle Scholar |

[46]  P. L. Golas, S. Louie, G. V. Lowry, K. Matyjaszewski, R. D. Tilton, Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP. Langmuir 2010, 26, 16 890.
Comparative study of polymeric stabilizers for magnetite nanoparticles using ATRP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12ju77I&md5=eac28d3fff074c7270b0c11f8b742e63CAS |

[47]  S. R. Chae, S. Y. Wang, Z. D. Hendren, M. R. Wiesner, Y. Watanabe, C. K. Gunsch, Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control. J. Membr. Sci. 2009, 329, 68.
Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGqtLs%3D&md5=2a4d69baf0905cdc7cc1ce1ffa461418CAS |

[48]  X. K. Cheng, A. T. Kan, M. B. Tomson, Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60. J. Nanopart. Res. 2005, 7, 555.
Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWhsLo%3D&md5=1b6a3276e05ac47ca310ac9bd356a8c4CAS |

[49]  G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, B. Vincent, Polymers at Interfaces 1993 (Chapman & Hall: London).

[50]  H. J. Kim, T. Phenrat, R. D. Tilton, G. V. Lowry, Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J. Colloid Interface Sci. 2012, 370, 1.
Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsleqsrs%3D&md5=8ba65fa709f9023e17dfe04e9309fe94CAS | 22284571PubMed |

[51]  H. J. Kim, T. Phenrat, R. D. Tilton, G. V. Lowry, Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol. 2009, 43, 3824.
Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslOksrs%3D&md5=697a14a5e2c88fb0832d5790cac36510CAS | 19544894PubMed |

[52]  T. L. Doane, C. H. Chuang, R. J. Hill, C. Burda, Nanoparticle zeta-potentials. Acc. Chem. Res. 2012, 45, 317.
Nanoparticle zeta-potentials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVequrbO&md5=0648a9b06de1de9b791c5890721285b2CAS | 22074988PubMed |

[53]  W. M. Haynes (Ed.), Geophysics, astronomy, and acoustics, in CRC Handbook of Chemistry and Physics, 94th edn 2013, pp. 14–18 (CRC Press: Boca Raton, FL).

[54]  N. Tufenkji, M. Elimelech, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 2004, 38, 529.
Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlKjs7w%3D&md5=69f47bbed810f5f6f5894957d0cb2b63CAS | 14750730PubMed |

[55]  M. Elimelech, W. H. Chen, J. J. Waypa, Measuring the zeta (electrokinetic) potential of reverse-osmosis membranes by a streaming potential analyzer. Desalination 1994, 95, 269.
Measuring the zeta (electrokinetic) potential of reverse-osmosis membranes by a streaming potential analyzer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFyquro%3D&md5=a993a7887e08c45069a1eb10d478e7f1CAS |

[56]  D. C. Henry, The cataphoresis of suspended particles. Part I. The equation of cataphoresis. Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 1931, 133, 106.
The cataphoresis of suspended particles. Part I. The equation of cataphoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38Xitlc%3D&md5=d2716d75d42e6a405035e661d59ae890CAS |

[57]  J. E. Gebhardt, D. W. Fuerstenau, Adsorption of polyacrylic acid at oxide–water interfaces. Colloids Surf. 1983, 7, 221.
Adsorption of polyacrylic acid at oxide–water interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsVeks7w%3D&md5=3024a857d03fce00621beb935b662796CAS |

[58]  J. Wiszniowski, D. Robert, J. Surmacz-Gorska, K. Miksch, J. V. Weber, Photocatalytic decomposition of humic acids on TiO2. Part I. Discussion of adsorption and mechanism. J. Photoch. Photobio. A 2002, 152, 267.
Photocatalytic decomposition of humic acids on TiO2. Part I. Discussion of adsorption and mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslOjtbY%3D&md5=48a9b3208b1b7379b216972fced72749CAS |

[59]  K. A. Huynh, K. L. Chen, Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ. Sci. Technol. 2011, 45, 5564.
Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVWkurw%3D&md5=8a7b8461f4e3ad391fdbbb7119cdbcecCAS | 21630686PubMed |

[60]  K. L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J. Colloid Interface Sci. 2007, 309, 126.
Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtl2jt78%3D&md5=1e0c214b2bc39b8d345de94e91379958CAS | 17331529PubMed |

[61]  K. L. Chen, M. Elimelech, Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environ. Sci. Technol. 2008, 42, 7607.
Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2lu7fP&md5=7d941383084b240b6ff4cd0f6d072fabCAS | 18983082PubMed |

[62]  S. R. Chae, A. R. Badireddy, J. F. Budarz, S. H. Lin, Y. Xiao, M. Therezien, M. R. Wiesner, Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport. ACS Nano 2010, 4, 5011.
Heterogeneities in fullerene nanoparticle aggregates affecting reactivity, bioactivity, and transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVWqt7jM&md5=565d4deb648154d0e4afe05f79b6a119CAS | 20707347PubMed |

[63]  K. J. Wilkinson, E. Balnois, G. G. Leppard, J. Buffle, Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloid. Surface. A 1999, 155, 287.
Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksleis7k%3D&md5=3b9424c2c8523edc251a5cf0d9695ed7CAS |

[64]  R. L. Williams, D. F. Williams, Albumin adsorption on metal-surfaces. Biomaterials 1988, 9, 206.
Albumin adsorption on metal-surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFykurc%3D&md5=daed550c46276c93f5079ad8591dc355CAS | 3408789PubMed |

[65]  S. H. Lin, M. R. Wiesner, Deposition of aggregated nanoparticles – a theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface. Environ. Sci. Technol. 2012, 46, 13 270.
Deposition of aggregated nanoparticles – a theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslWksbnI&md5=64fc05ddc5302b4ae427fceedc6487fcCAS |

[66]  S. Deguchi, T. Yamazaki, S. Mukai, R. Usami, K. Horikoshi, Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies. Chem. Res. Toxicol. 2007, 20, 854.
Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Ogtbg%3D&md5=3e72fb337c825e70c9adb9b3fc04a31aCAS | 17503852PubMed |

[67]  R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. M. Li, W. Kim, P. J. Utz, H. J. Dai, Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984.
Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1yju7o%3D&md5=ffed473910980f181f7cbdba5e752209CAS | 12697899PubMed |

[68]  A. A. Keller, H. T. Wang, D. X. Zhou, H. S. Lenihan, G. Cherr, B. J. Cardinale, R. Miller, Z. X. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962.
Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFWgtLk%3D&md5=30e187200504069c8bfd0e52f1011411CAS | 20151631PubMed |

[69]  R. F. Domingos, N. Tufenkji, K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ. Sci. Technol. 2009, 43, 1282.
Aggregation of titanium dioxide nanoparticles: role of a fulvic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlKktA%3D%3D&md5=bb858a0eeb0445fe92775dcda539c1f6CAS | 19350891PubMed |

[70]  X. A. Li, J. J. Lenhart, H. W. Walker, Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 2010, 26, 16 690.
Dissolution-accompanied aggregation kinetics of silver nanoparticles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ahtbbN&md5=5bdfe4601f8800f0443d5ed66c43294dCAS |

[71]  S. H. Lin, Y. W. Cheng, J. Liu, M. R. Wiesner, Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 2012, 28, 4178.
Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsVWhuw%3D%3D&md5=2a610f5cef16fafde0ceb5ed61e71a09CAS |

[72]  J. Brant, H. Lecoanet, M. Hotze, M. Wiesner, Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ. Sci. Technol. 2005, 39, 6343.
Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlKis70%3D&md5=63bde56d5af1fa75ec63445cbe6a2858CAS | 16190186PubMed |

[73]  Y. G. Wang, Y. S. Li, J. Costanza, L. M. Abriola, K. D. Pennell, Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents. Environ. Sci. Technol. 2012, 46, 11 761.
Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGjsbfJ&md5=1d48e3b2bc72f7aad4d3d0220b2fa689CAS |

[74]  D. Grolimund, M. Elimelech, M. Borkovec, Aggregation and deposition kinetics of mobile colloidal particles in natural porous media. Colloid Surf. A 2001, 191, 179.
Aggregation and deposition kinetics of mobile colloidal particles in natural porous media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslCju78%3D&md5=eec76acfaa559f86ccf3e0a98b5eacd3CAS |

[75]  S. Walker, M. Elimelech, J. Redman, Influence of growth phase on bacterial deposition: interaction mechanisms in packed-bed column and radial stagnation point flow systems. Environ. Sci. Technol. 2006, 40, 5586.
Influence of growth phase on bacterial deposition: interaction mechanisms in packed-bed column and radial stagnation point flow systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslKmu7g%3D&md5=d44976045ef62183dc0dfd8a01c970b6CAS |

[76]  C. Flood, T. Cosgrove, D. Qiu, Y. Espidel, I. Howell, P. Revell, Influence of a surfactant and electrolytes on adsorbed polymer layers. Langmuir 2007, 23, 2408.
Influence of a surfactant and electrolytes on adsorbed polymer layers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Oitw%3D%3D&md5=24041cfea71139a58ba4363c48bed758CAS | 17309202PubMed |

[77]  D. H. Tsai, M. Davila-Morris, F. W. DelRio, S. Guha, M. R. Zachariah, V. A. Hackley, Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir 2011, 27, 9302.
Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFSgtr0%3D&md5=5969083d2e304d5bed91626146f2f53dCAS | 21726083PubMed |

[78]  C. Levard, B. C. Reinsch, F. M. Michel, C. Oumahi, G. V. Lowry, G. E. Brown, Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, 5260.
Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlCkuro%3D&md5=78a71476ddabcc48bd33cb3b00909833CAS | 21598969PubMed |

[79]  B. L. T. Lau, W. C. Hockaday, K. Ikuma, O. Furman, A. W. Decho, A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloid Surf. A 2013, 435, 22.
A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKhuw%3D%3D&md5=508cd974959758d7139ee520ec11a5daCAS |

[80]  S. J. Mears, T. Cosgrove, L. Thompson, I. Howell, Solvent relaxation NMR measurements on polymer, particle, surfactant systems. Langmuir 1998, 14, 997.
Solvent relaxation NMR measurements on polymer, particle, surfactant systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXpvV2qtQ%3D%3D&md5=4bc89a53d205fe567b8268d05bb32be5CAS |

[81]  K. K. Au, S. L. Yang, C. R. O’Melia, Adsorption of weak polyelectrolytes on metal oxide surfaces: a hybrid SC/SF approach. Environ. Sci. Technol. 1998, 32, 2900.
Adsorption of weak polyelectrolytes on metal oxide surfaces: a hybrid SC/SF approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsVKmur0%3D&md5=5ae3647c9ac4336219f56adf3e072facCAS |