Environmental chemistry: a discipline standing on two shoulders
Montserrat Filella
+ Author Affiliations
- Author Affiliations
A Institute F.-A. Forel, University of Geneva, Route de Suisse 10, CH-1290 Versoix, Switzerland. Email: montserrat.filella@unige.ch
B SCHEMA, Rue Principale 92, L-6990 Rameldange, Luxembourg.
Environmental Chemistry 11(1) 37-40 https://doi.org/10.1071/EN13180
Submitted: 6 October 2013 Accepted: 16 December 2013 Published: 25 February 2014
References
[1] N. Oreskes, Why predict? Historical perspectives on prediction in Earth Science, in Prediction. Science, Decision Making, and the Future of Nature (Eds D. Sarewitz, R. A. Pielke Jr, R. Byerly Jr.) 2000, pp. 23–40 (Island Press: Washington, DC).[2] W. Stumm, R. Schwarzenbach, L. Sigg, From environmental analytical chemistry to ecotoxicology – a plea for more concepts and less monitoring and testing. Angew. Chem. Int. Ed. Engl. 1983, 22, 380.
| From environmental analytical chemistry to ecotoxicology – a plea for more concepts and less monitoring and testing.Crossref | GoogleScholarGoogle Scholar |
[3] W. Stumm, J. J. Morgan, Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters 1970 (Wiley: New York).
[4] J. Buffle, Complexation Reactions in Aquatic Systems. An Analytical Approach 1988 (Ellis Horwood: Chichester, UK).
[5] F. M. M. Morel, J. G. Hering, Principles and Applications of Aquatic Chemistry 1993 (Wiley: New York).
[6] R. P. Schwarzenbach, P. M. Gschwend, D. M. Imboden, Environmental Organic Chemistry 1993 (Wiley: New York).
[7] W. H. Glaze, Environmental chemistry comes of age. Environ. Sci. Technol. 1994, 28, 169A.
| Environmental chemistry comes of age.Crossref | GoogleScholarGoogle Scholar |
[8] M. Schnitzer, Soil organic matter – the next 75 years. Soil Sci. 1991, 151, 41.
| Soil organic matter – the next 75 years.Crossref | GoogleScholarGoogle Scholar |
[9] R. Sapolsky, Anecdotalism, in This Will Make You Smarter (Ed J. Brockman) 2012, pp. 278–280 (Harper Perennial: New York).
[10] A. Revkin, Anthropophilia, in This Will Make You Smarter (Ed J. Brockman) 2012, pp. 386–388 (Harper Perennial: New York).
[11] P. W. Anderson, More is different. Science 1972, 177, 393.
| More is different.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVGlu7s%3D&md5=aec1d27601f9949402d65e657b77fe90CAS | 17796623PubMed |
[12] C. W. Johnson, What are emergent properties and how do they affect the engineering of complex systems? Reliab. Eng. Syst. Saf. 2006, 91, 1475.
| What are emergent properties and how do they affect the engineering of complex systems?Crossref | GoogleScholarGoogle Scholar |
[13] W.-X. Wang, P. S. Rainbow, Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ. Chem. 2006, 3, 395.
| Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWnur7N&md5=0664fcade12cb95b1bd70655a9391037CAS |
[14] M. Harvey, The iron CLAW. Environ. Chem. 2007, 4, 396.
| The iron CLAW.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVanurvJ&md5=14989d378e2bf4cc7b5c8d8445db93c4CAS |
[15] J. Pelley, Complexity behind biotech corn not addressed. Environ. Sci. Technol. 2002, 36, 227A.
| Complexity behind biotech corn not addressed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1ehsb4%3D&md5=3cf9ec1504edab08b3e7c780ba34d635CAS |
[16] D. Eckert, S. Qiu, M. Elsner, O. A. Cirpka, Model complexity needed for quantitative analysis of high resolution isotope and concentration data from a toluene-pulse experiment. Environ. Sci. Technol. 2013, 47, 6900.
| 1:CAS:528:DC%2BC3sXnsVeqsLk%3D&md5=02c2af6e69144c060824ff883b5cfc98CAS | 23668814PubMed |
[17] T. S. Schmidt, J. M. Kraus, D. M. Walters, R. B. Wanty, Emergence flux declines disproportionately to larval density along a stream metals gradient. Environ. Sci. Technol. 2013, 47, 8784.
| 1:CAS:528:DC%2BC3sXps1yhs70%3D&md5=3c8bcb5e9cfd6d98059db891141f83c9CAS | 23781899PubMed |
[18] S. Cole, The emergence of treatment wetlands. Environ. Sci. Technol. 1998, 32, 218A.
| The emergence of treatment wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVyitr0%3D&md5=11d1239ce0cd44e9c3b6e9e97628e07bCAS | 21662202PubMed |
[19] T. Todoruk, C. H. Langford, A. Kantzas, Pore-scale redistribution of water during wetting of air-dried soils as studied by low-field NMR relaxometry. Environ. Sci. Technol. 2003, 37, 2707.
| Pore-scale redistribution of water during wetting of air-dried soils as studied by low-field NMR relaxometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVCitbg%3D&md5=d3b31b5ba90c7838a77cd297ca0e7cecCAS | 12854709PubMed |
[20] H. S. Viswanathan, R. J. Pawar, P. H. Stauffer, J. P. Kaszuba, J. W. Carey, S. C. Olsen, G. N. Keating, D. Kavestki, G. D. Guthrie, Development of a hybrid process and system model for the assessment of wellbore leakage at a geologic CO2 sequestration site. Environ. Sci. Technol. 2008, 42, 7280.
| Development of a hybrid process and system model for the assessment of wellbore leakage at a geologic CO2 sequestration site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWhs77O&md5=85655bfb0d74def54e121935a5357b75CAS | 18939559PubMed |
[21] A. W. Miller, D. R. Rodriguez, B. D. Honeyman, Upscaling sorption/desorption processes in reactive transport models to describe metal/radionuclide transport: a critical review. Environ. Sci. Technol. 2010, 44, 7996.
| Upscaling sorption/desorption processes in reactive transport models to describe metal/radionuclide transport: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OqurzN&md5=ebde2a0991b7bec16e47a1e840af32a1CAS | 20942399PubMed |
[22] W. Whewell, The philosophy of the inductive sciences, founded upon their history, 2nd edn 1847 Available at http://openlibrary.org/books/OL7229132M/The_philosophy_of_the_inductive_sciences [Verified 28 December 2013].
[23] R. Town, M. Filella, Dispelling the myths: Is the existence of L1 and L2 ligands necessary to explain metal ion speciation in natural waters? Limnol. Oceanogr. 2000, 45, 1341.
| Dispelling the myths: Is the existence of L1 and L2 ligands necessary to explain metal ion speciation in natural waters?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFCitbo%3D&md5=8ef04715f580f513fcd9e935ac10553aCAS |
[24] T. Harada, Y. Takahashi, Origin of the difference in the distribution behavior of tellurium and selenium in a soil–water system. Geochim. Cosmochim. Acta 2008, 72, 1281.
| Origin of the difference in the distribution behavior of tellurium and selenium in a soil–water system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1WgurY%3D&md5=229d6a649bc9d0fe0414517c67053d10CAS |
[25] E. Stokstad, Canada’s experimental lakes. Science 2008, 322, 1316.
| Canada’s experimental lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2jtrbJ&md5=90b3912baf8ec0a37bfe8b40bfdaf285CAS | 19039113PubMed |
[26] N. Oreskes, K. Shrader-Frechett, K. Belitz, Verification, validation, and confirmation of numerical models in the earth sciences. Science 1994, 263, 641.
| Verification, validation, and confirmation of numerical models in the earth sciences.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvit1OrsQ%3D%3D&md5=d535904851de4653844eeacb2ffb992dCAS | 17747657PubMed |
[27] D. K. Nordstrom, On evaluating and applying aqueous geochemical models. Eos Trans. AGU 1993, 74, 326.
[28] M. Filella, Quantifying ‘humics’ in freshwaters: purpose and methods. Chem. Ecol. 2010, 26, 177.
| Quantifying ‘humics’ in freshwaters: purpose and methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGgsL7J&md5=28c6bf407c66b744f4e1bce57dbf081cCAS |
[29] M. Filella, Food for thought: a critical overview of current practical and conceptual challenges in trace element analysis in natural waters. Water 2013, 5, 1152.
| Food for thought: a critical overview of current practical and conceptual challenges in trace element analysis in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GksbbM&md5=270aec124b04f4846f2c29744b9600e1CAS |
[30] M. Filella, Colloidal properties of submicron particles in natural waters, in Environmental Colloids and Particles: Behaviour, Separation and Characterisation (Eds K. W. Wilkinson, J. Lead) 2007, pp. 17–93 (Wiley: New York).
[31] E. Tipping, Colloids in the aquatic environment. Chem. Ind. 1988, 485.
| 1:CAS:528:DyaL1cXkvFygsrs%3D&md5=fc1ffbb2b72f22ac5d965ff72de905a7CAS |
[32] M. Gell-Mann, Transformations of the twenty-first century: transitions to greater sustainability, in Global Sustainability – A Nobel Cause (Eds H. J. Schellnhuber, M. Molina, N. Stern, V. Huber, S. Kadner) 2010, pp. 1–7 (Cambridge University Press: Cambridge, UK).
[33] Y. Takahashi, Origin of difference in solubility between tellurium and selenium into water at Earth’s surface, in Environmental Science, pp. 134–135. Available at http://www.spring8.or.jp/pdf/en/res_fro/08/134-135.pdf [Verified 28 December 2013].
[34] S. Goldberg, L. J. Criscenti, D. R. Turner, J. A. Davis, K. J. Cantrell, Adsorption–desorption processes in subsurface reactive transport modeling. Vadose Zone J. 2007, 6, 407.
| Adsorption–desorption processes in subsurface reactive transport modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslegurc%3D&md5=9a0990dece6d7da6bea5db6496c69114CAS |