Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Australian carbon tetrachloride emissions in a global context

Paul J. Fraser A I , Bronwyn L. Dunse A , Alistair J. Manning B , Sean Walsh C , R. Hsiang J. Wang D , Paul B. Krummel A , L. Paul Steele A , Laurie W. Porter E J , Colin Allison A , Simon O’Doherty F , Peter G. Simmonds F , Jens Mühle G , Ray F. Weiss G and Ronald G. Prinn H
+ Author Affiliations
- Author Affiliations

A Centre for Australian Weather & Climate Research, CSIRO Marine & Atmospheric Research, 107-121 Station Street, Aspendale, Vic. 3195, Australia.

B UK Met Office, Fitzroy Road, Exeter EX1 3PB, UK.

C Monitoring & Assessment, EPA Victoria, Ernest Jones Drive, Macleod, Vic. 3085, Australia.

D School of Earth & Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0340, USA.

E Centre for Australian Weather & Climate Research, Bureau of Meteorology, 700 Collins Street, Docklands, Vic. 3008, Australia.

F Atmospheric Chemistry Research Group, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK.

G Scripps Institution of Oceanography, University of California at San Diego, 8675 Discovery Way, La Jolla, CA 92093-0244, USA.

H Center for Global Change Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA.

I Corresponding author. Email: paul.fraser@csiro.au

J Deceased.

Environmental Chemistry 11(1) 77-88 https://doi.org/10.1071/EN13171
Submitted: 6 September 2013  Accepted: 12 November 2013   Published: 19 February 2014

Environmental context. Carbon tetrachloride in the background atmosphere is a significant environmental concern, responsible for ~10 % of observed stratospheric ozone depletion. Atmospheric concentrations of CCl4 are higher than expected from currently identified emission sources: largely residual emissions from production, transport and use. Additional sources are required to balance the expected atmospheric destruction of CCl4 and may contribute to a slower-than-expected recovery of the Antarctic ozone ‘hole’.

Abstract. Global (1978–2012) and Australian (1996–2011) carbon tetrachloride emissions are estimated from atmospheric observations of CCl4 using data from the Advanced Global Atmospheric Gases Experiment (AGAGE) global network, in particular from Cape Grim, Tasmania. Global and Australian emissions are in decline in response to Montreal Protocol restrictions on CCl4 production and consumption for dispersive uses in the developed and developing world. However, atmospheric data-derived emissions are significantly larger than ‘bottom-up’ estimates from direct and indirect CCl4 production, CCl4 transportation and use. Australian CCl4 emissions are not a result of these sources, and the identification of the origin of Australian emissions may provide a clue to the origin of some of these ‘missing’ global sources.

Additional keywords: atmospheric and ‘bottom-up’ emissions estimates, Australian carbon tetrachloride emissions, emission estimates by inverse calculations and interspecies correlation, global carbon tetrachloride emissions.


References

[1]  S. Montzka, S. Reimann, Ozone-depleting substances (ODSs) and related chemicals, Chapter 1, in Scientific Assessment of Ozone Depletion: 2010, WMO Global Ozone Research and Monitoring Project, Report Number 52 2011, pp. 1.1–1.108. (World Meteorological Organization: Geneva, Switzerland)

[2]  P. Fraser, P. Krummel, P. Steele, C. Trudinger, D. Etheridge, S. O'Doherty, P. Simmonds, B. Miller, J. Mühle, R. Weiss, D. Oram, R. Prinn, R. Wang, Equivalent effective stratospheric chlorine from Cape Grim Air Archive, Antarctic firn and AGAGE global measurements of ozone depleting substances, in Baseline Atmospheric Program (Australia) 2009–2010 (Eds P. Krummel and N. Derek) in press (Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research: Melbourne).

[3]  A. Klekociuk, M. Tully, S. Alexander, R. Dargaville, L. Deschamps, P. Fraser, H. Gies, S. Henderson, J. Javorniczky, P. Krummel, S. Petelina, J. Shanklin, J. Siddaway, K. Stone, The Antarctic ozone hole during 2010. Aust. Meteorol. Oceanogr. J. 2011, 61, 253.

[4]  Report on Emissions Reductions and Phase-Out of CTC (Decision 55/45), UNEP/OzL.Pro/ExCom/58/50 2009 (United Nations Environment Programme, Executive Committee of the Multilateral Fund for the Implementation of the Montreal Protocol: Montreal, QC).

[5]  P. Fraser, G. Pearman, Atmospheric halocarbons in the southern hemisphere. Atmos. Environ. 1978, 12, 839.
Atmospheric halocarbons in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXht1KlsLY%3D&md5=9939c2f9147e8ad58794359f61bb80baCAS | 697966PubMed |

[6]  X. Xiao, R. Prinn, P. Fraser, R. Weiss, P. Simmonds, S. O’Doherty, B. Miller, P. Salameh, C. Harth, P. Krummel, A. Golombek, L. Porter, J. Elkins, G. Dutton, B. Hall, P. Steele, R. Wang, D. Cunnold, Atmospheric three-dimensional inverse modelling of regional industrial emissions and global oceanic uptake of carbon tetrachloride. Atmos. Chem. Phys. 2010, 10, 10 421.
Atmospheric three-dimensional inverse modelling of regional industrial emissions and global oceanic uptake of carbon tetrachloride.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1KjtLk%3D&md5=49d9a9626a94c85fb7c1877fc9e10830CAS |

[7]  P. Simmonds, D. Cunnold, F. Alyea, C. Cardelino, A. Crawford, R. Prinn, P. Fraser, R. Rasmussen, R. Rosen, Carbon tetrachloride lifetimes and emissions determined from daily global measurements during 1978–1985. J. Atmos. Chem. 1988, 7, 35.
Carbon tetrachloride lifetimes and emissions determined from daily global measurements during 1978–1985.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlsFGhtbk%3D&md5=2dfece0c7410bdb44346f3c67cacd0d5CAS |

[8]  P. Simmonds, D. Cunnold, R. Weiss, B. Miller, R. Prinn, P. Fraser, A. McCulloch, F. Alyea, S. O'Doherty, Global trends and emission estimates of CCl4 from in situ background observations from July 1978 to June 1996. J. Geophys. Res. 1998, 103, 16 017.
Global trends and emission estimates of CCl4 from in situ background observations from July 1978 to June 1996.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGltL8%3D&md5=97e3ab01881051d3c107ba99c0c2c37eCAS |

[9]  P. B. Krummel, P. J. Fraser, L. P. Steele, L. W. Porter, N. Derek, C. Rickard, J. Ward, B. L. Dunse, R. L. Langenfelds, S. Baly, M. Leist, S. McEwan, The AGAGE in situ program for non-CO2 greenhouse gases at Cape Grim, 2007–2008: methane, nitrous oxide, carbon monoxide, hydrogen, CFCs, HCFCs, HFCs, PFCs, halons, chlorocarbons, hydrocarbons and sulfur hexafluoride, in Baseline Atmospheric Program (Australia) 2007–2008 (Eds N. Derek and P. B. Krummel) 2011, pp. 67–80 (Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research: Melbourne).

[10]  G. Sturrock, D. Etheridge, C. Trudinger, P. Fraser, A. Smith, Atmospheric histories of halocarbons from analysis of Antarctic firn air: major Montreal Protocol species. J. Geophys. Res. 2002, 107, 4765.
Atmospheric histories of halocarbons from analysis of Antarctic firn air: major Montreal Protocol species.Crossref | GoogleScholarGoogle Scholar |

[11]  R. Prinn, R. Weiss, P. Fraser, P. Simmonds, D. Cunnold, F. Alyea, S. O'Doherty, P. Salameh, B. Miller, J. Huang, R. Wang, D. Hartley, C. Harth, P. Steele, G. Sturrock, P. Midgley, A. McCulloch, A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J. Geophys. Res. 2000, 105, 17 751.
A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVOrsb8%3D&md5=bc9921c67433e04beaa62604471b00baCAS |

[12]  S. Montzka, J. Butler, J. Elkins, T. Thompson, A. Clarke, L. Lock, Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature 1999, 398, 690.
Present and future trends in the atmospheric burden of ozone-depleting halogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVegsbo%3D&md5=7975b5cc0422407dc3a72882903f9c5bCAS |

[13]  J. Daniel, G. Velders, A focus on information and options for policymakers, Chapter 5, in Scientific Assessment of Ozone Depletion: 2010, WMO Global Ozone Research and Monitoring Project, Report Number 52 2011, pp. 5.1–5.56 (World Meteorological Organization: Geneva, Switzerland).

[14]  Y. Yokouchi, T. Inagaki, K. Yazawa, T. Tamaru, T. Enomoto, K. Izumi, Estimates of ratios of anthropogenic halocarbon emissions from Japan based on aircraft monitoring over Sagami Bay, Japan. J. Geophys. Res. 2005, 110, D06301.
Estimates of ratios of anthropogenic halocarbon emissions from Japan based on aircraft monitoring over Sagami Bay, Japan.Crossref | GoogleScholarGoogle Scholar |

[15]  M. Vollmer, L. Zhou, B. Greally, S. Henne, B. Yao, S. Reimann, F. Stordall, D. Cunnold, X. Zhang, M. Maione, F. Zhang, J. Huang, P. Simmonds, Emissions of ozone-depleting halocarbons from China. Geophys. Res. Lett. 2009, 36, L15823.

[16]  M. Shao, D. Huang, D. Gu, S. Lu, C. Chang, J. Wang, Estimates of anthropogenic halocarbon emissions based on measured ratios relative to CO in the Pearl River Delta region, China. Atmos. Chem. Phys. 2011, 11, 5011.
Estimates of anthropogenic halocarbon emissions based on measured ratios relative to CO in the Pearl River Delta region, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWlt73O&md5=230dbf3e46bb7c4138d275e7476dafbbCAS |

[17]  D. Hurst, J. Lin, P. Romashkin, B. Daube, C. Gerbig, D. Matross, S. Wofsy, B. Hall, J. Elkins, Continuing global significance of emissions of Montreal Protocol-restricted halocarbons in the United States and Canada. J. Geophys. Res. 2006, 111, D15302.
Continuing global significance of emissions of Montreal Protocol-restricted halocarbons in the United States and Canada.Crossref | GoogleScholarGoogle Scholar |

[18]  J. Miller, S. Lehman, S. Montzka, C. Sweeney, B. Miller, A. Karion, C. Wolak, E. Dlugokencky, J. Southon, J. Turnbull, P. Tans, Linking emissions of fossil fuel CO2 and other anthropogenic gases using atmospheric 14CO2. J. Geophys. Res. 2012, 117, D08302.
Linking emissions of fossil fuel CO2 and other anthropogenic gases using atmospheric 14CO2.Crossref | GoogleScholarGoogle Scholar |

[19]  B. Dunse, P. Steele, S. Wilson, P. Fraser, P. Krummel, Trace gas emissions from Melbourne Australia, based on AGAGE observations at Cape Grim, Tasmania, 1995–2000. Atmos. Environ. 2005, 39, 6334.
Trace gas emissions from Melbourne Australia, based on AGAGE observations at Cape Grim, Tasmania, 1995–2000.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOhtLnN&md5=8af3f1773edb452d570edc7dc0bcd89dCAS |

[20]  N. Mahowald, P. Rasch, B. Eaton, S. Whittlestone, R. Prinn, Transport of 222Rn to the remote troposphere using the Model of Atmospheric Transport and Chemistry and assimilated winds from ECMWF and the National Center for Environmental Prediction/NCAR. J. Geophys. Res. 1997, 102, 28 139.
Transport of 222Rn to the remote troposphere using the Model of Atmospheric Transport and Chemistry and assimilated winds from ECMWF and the National Center for Environmental Prediction/NCAR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVWqsw%3D%3D&md5=152b97813764f3a8eb0cb75759203a97CAS |

[21]  D. Cunnold, R. Weiss, R. Prinn, D. Hartley, P. Simmonds, P. Fraser, B. Miller, F. Alyea, L. Porter, GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992–1994. J. Geophys. Res. 1997, 102, 1259.
GAGE/AGAGE measurements indicating reductions in global emissions of CCl3F and CCl2F2 in 1992–1994.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFGlsrs%3D&md5=2df6772f8f2dc96f88d119c1af244544CAS |

[22]  A. Manning, S. O’Doherty, A. Jones, P. Simmonds, R. Derwent, Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modelling approach. J. Geophys. Res. 2011, 116, D02305.
Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modelling approach.Crossref | GoogleScholarGoogle Scholar |

[23]  S. O'Doherty, P. Simmonds, D. Cunnold, H. Wang, G. Sturrock, P. Fraser, D. Ryall, R. Derwent, R. Weiss, P. Salameh, B. Miller, R. Prinn, In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998. J. Geophys. Res. 2001, 106, 20 429.
In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsFOlu7c%3D&md5=95d4b36bd6f588a5212f4adeb2bee9f7CAS |

[24]  J. Butler, M. Battle, M. Bender, S. Montzka, A. Clarke, E. Saltzman, C. Sucher, J. Severinghaus, J. Elkins, A record of atmospheric halocarbons during the twentieth century from polar firn air. Nature 1999, 399, 749.
A record of atmospheric halocarbons during the twentieth century from polar firn air.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVShs74%3D&md5=4409e1973676e5a022d3c484f73bf72aCAS |

[25]  B. Dunse, P. Steele, P. Fraser, S. Wilson, An analysis of Melbourne pollution episodes observed at Cape Grim from 1995–1998, in Baseline Atmospheric Program (Australia) 1997–98 (Eds N. Tindale, R. Francey, and N. Derek) 2001, pp. 34–42 (Bureau of Meteorology and CSIRO Atmospheric Research: Melbourne).

[26]  B. Dunse, Investigation of Urban Emissions of Trace Gases by use of Atmospheric Measurements and a High-Resolution Atmospheric Transport Model 2002, PhD thesis, Wollongong University, Wollongong, NSW, Australia.

[27]  Air Emissions Inventory: Port Phillip Region, EPA Publication 632 1998 (EPA Victoria: Melbourne).

[28]  W. Delaney, A. Marshall, Victorian air emissions inventory for 2006, in Proceedings: 20th International Clean Air and Environment Conference, 30 July–2 August 2011, Auckland, New Zealand 2011 (Clean Air Society of Australia and New Zealand: Auckland, New Zealand).

[29]  P. Fraser, P. Steele, P. Krummel, C. Allison, S. Coram, B. Dunse, M. Vollmer, Australian Synthetic Greenhouse Gas Emissions, Research Projects 2011/2012, Final Report October 2012 2012 (Department of Sustainability, Environment, Populations and Communities: Parkes, ACT).

[30]  Future Air Quality in Victoria – Final Report, EPA Publication 1535 2013 (EPA Victoria).

[31]  A. Barnett, Air pollution trends in four Australian cities 1996–2011. Air Qual. Clim. Ch. 2013, 46, 28.

[32]  R. Draxler, D. Hess, Description of the HYSPLIT_4 Modeling 389 System, NOAA Technical Memorandum ERL ARL-224 1997 (NOAA: Air Resources Laboratory, Silver Spring, MD).

[33]  A. Manning, D. Ryall, R. Derwent, P. Simmonds, S. O’Doherty, Estimating European ozone depleting and greenhouse gases using observations and a modelling attribution technique. J. Geophys. Res. 2003, 108, 4405.
Estimating European ozone depleting and greenhouse gases using observations and a modelling attribution technique.Crossref | GoogleScholarGoogle Scholar |

[34]  A. Manning, S. O’Doherty, A. R. Jones, P. G. Simmonds, R. G. Derwent, Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modeling approach. J. Geophys. Res. 2011, 116, D02305.
Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modeling approach.Crossref | GoogleScholarGoogle Scholar |

[35]  S. O'Doherty, D. Cunnold, A. Manning, B. Miller, R. Wang, P. Krummel, P. Fraser, P. Simmonds, A. McCulloch, R. Weiss, P. Salameh, L. Porter, R. Prinn, J. Huang, G. Sturrock, D. Ryall, R. Derwent, S. Montzka, Rapid growth of hydrofluorocarbon-134a and hydrochlorofluorocarbons-141b, -142b, and -22 from Advanced Global Atmospheric Gases Experiment (AGAGE) observations at Cape Grim, Tasmania, and Mace Head, Ireland. J. Geophys. Res. 2004, 109,
Rapid growth of hydrofluorocarbon-134a and hydrochlorofluorocarbons-141b, -142b, and -22 from Advanced Global Atmospheric Gases Experiment (AGAGE) observations at Cape Grim, Tasmania, and Mace Head, Ireland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlKrtL4%3D&md5=48c35b44420783b87d68dda3b78e6020CAS |

[36]  S. O’Doherty, D. Cunnold, B. Miller, J. Mühle, A. McCulloch, P. Simmonds, A. Manning, S. Reimann, M. Vollmer, B. Greally, R. Prinn, P. Fraser, P. Steele, P. Krummel, B. Dunse, L. Porter, C. Lunder, N. Schmidbauer, O. Hermansen, P. Salameh, C. Harth, R. Wang, R. Weiss, Global and regional emissions of HFC-125 (CHF2CF3) from in situ and air archive observations at AGAGE and SOGE observatories. J. Geophys. Res. 2009, 114, D23304.
Global and regional emissions of HFC-125 (CHF2CF3) from in situ and air archive observations at AGAGE and SOGE observatories.Crossref | GoogleScholarGoogle Scholar |

[37]  R. Derwent, P. Simmonds, B. Greally, S. O’Doherty, A. McCulloch, A. Manning, S. Reimann, D. Follini, M. Vollmer, The phase-in and phase-out of European emissions of HCFC-141b and -142b under the Montreal Protocol: evidence from observations at Mace Head and Jungfraujoch, Switzerland, from 1994 to 2004. Atmos. Environ. 2007, 41, 757.
The phase-in and phase-out of European emissions of HCFC-141b and -142b under the Montreal Protocol: evidence from observations at Mace Head and Jungfraujoch, Switzerland, from 1994 to 2004.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlClsbfF&md5=a997f8d74772b5bf1cf586fed74c2658CAS |

[38]  I. Rae, Chemical Industry. eMelbourne – the City Past & Present (The University of Melbourne). Available at http://www.emelbourne.net.au/biogs/EM00331b.htm [Verified 16 December 2013].

[39]  C. Allison, S. Coram, N. Derek, P. Fraser, Greenhouse Gas Emissions from the Rye Landfill, Mornington Peninsula, Victoria, Report for Department of the Environment, Water, Heritage and the Arts 2009 (Department of Sustainability, Environment, Populations and Communities: Parkes, ACT).

[40]  E. Hodson, D. Martin, R. Prinn, The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom. Atmos. Chem. Phys. 2010, 10, 1899.
The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2qsL4%3D&md5=4440a5b1332d78bf250a8cfae3ffdac2CAS |

[41]  M. Miller, T. Batchelor, Information Paper on Feedstock Uses of Ozone-Depleting Substances 2012 (European Commission/Touchdown Consulting).

[42]  J. Cainey, M. Keywood, M. Grose, P. Krummel, I. Galbally, P. Johnston, R. Gillett, C. Meyer, P. Fraser, P. Steele, M. Harvey, K. Kerher, T. Stein, O. Ibrihim, Z. Ristovski, G. Johnson, C. Fletcher, K. Bigg, J. Gras, Precursors to Particles (P2P) at Cape Grim 2006: campaign overview. Environ. Chem. 2007, 4, 143.
Precursors to Particles (P2P) at Cape Grim 2006: campaign overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFalt70%3D&md5=415118b3304357ae94404fe47c6be5a5CAS |

[43]  R. Rhew, B. Miller, R. Weiss, Choroform, carbon tetrachloride and methyl chloroform fluxes in southern California ecosystems. Atmos. Environ. 2008, 42, 7135.
Choroform, carbon tetrachloride and methyl chloroform fluxes in southern California ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSqsr7F&md5=b8e8c7be761c6cb262e882f0462d9ccaCAS |

[44]  J. Wang, P. Qin, S. Sun, The flux of chloroform and tetrachloromethane along and elevated gradient of a coastal salt marsh, East China. Environ. Pollut. 2007, 148, 10.
The flux of chloroform and tetrachloromethane along and elevated gradient of a coastal salt marsh, East China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1ChsLs%3D&md5=1c9f4057293492e0c7c4c14c2e44d226CAS | 17234312PubMed |

[45]  M. Cox, P. Fraser, G. Sturrock, S. Siems, L. Porter, Terrestrial sources and sinks of halomethanes near Cape Grim, Tasmania. Atmos. Environ. 2004, 38, 3839.
Terrestrial sources and sinks of halomethanes near Cape Grim, Tasmania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFynsL4%3D&md5=93f93ad2066301bb86dd09d1beaa0b5bCAS |

[46]  S. Richardson, Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends in Anal. Chem 2003, 22, 666.
Disinfection by-products and other emerging contaminants in drinking water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKgsw%3D%3D&md5=ebd4f22b40f1043581e437aeb38d2d56CAS |

[47]  M. Odabashi, Halogenated volatile organic compounds from use of chlorine bleach-containing household products. Environ. Sci. Technol. 2008, 42, 1445.

[48]  Australian National Greenhouse Accounts, National Inventory Report 2011, vol. 1 2013 (Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education: Canberra, ACT).

[49]  B. Miller, R. Weiss, P. Salameh, T. Tanhua, B. Greally, J. Mühle, P. Simmonds, Medusa: a sample pre-concentration and GC-MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons and sulphur compounds. Anal. Chem. 2008, 80, 1536.
Medusa: a sample pre-concentration and GC-MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons and sulphur compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFymtro%3D&md5=da47f56baa4fb6acfe72817f0b3fb3cdCAS | 18232668PubMed |