Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Predicting PbII adsorption on soils: the roles of soil organic matter, cation competition and iron (hydr)oxides

Zhenqing Shi A D , Herbert E. Allen B , Dominic M. Di Toro B , Suen-Zone Lee C and James B. Harsh A
+ Author Affiliations
- Author Affiliations

A Department of Crop and Soil Sciences, Johnson Hall 131, PO Box 646420, Washington State University, Pullman, WA 99164-6420, USA.

B Center for the Study of Metals in the Environment, Department of Civil and Environmental Engineering, 356 DuPont Hall, University of Delaware, Newark, DE 19716, USA.

C Chia Nan University of Pharmacy and Science, President Office, Number 60, Section 1, Erren Road, Rende District, Tainan City 71710, Taiwan.

D Corresponding author. Email: zhenqing.shi@wsu.edu

Environmental Chemistry 10(6) 465-474 https://doi.org/10.1071/EN13153
Submitted: 13 August 2013  Accepted: 17 October 2013   Published: 17 December 2013

Environmental context. Lead is a common and persistent soil and water contaminant. This study provides a unique set of parameters for chemical models that can be used for predicting Pb adsorption by soil. The suggested modelling approach can be used to quantitatively predict Pb retention and release in soils with changing environmental conditions.

Abstract. Lead (PbII) adsorption on 14 non-calcareous New Jersey soils was studied with a batch method. Both adsorption edge and adsorption isotherm experiments were conducted covering a wide range of soil compositions, Pb concentrations and solution pHs. Visual MINTEQ was used to calculate the Pb adsorption equilibrium by coupling the Stockholm Humic Model, the CD-MUSIC model, a diffuse layer model and a cation exchange model for Pb reactions with soil organic matter (SOM), Fe (hydr)oxides, Al hydroxides and clay minerals. For model predictions, reactive organic matter (ROM), the fraction of SOM responsible for Pb binding, and reactive Al and FeIII in soils were quantified. The models predicted Pb adsorption to soils reasonably well with varying SOM and mineral content at various pHs and Pb concentrations. For 3.0 < pH < 6.0, the log partition coefficient root mean square error was 0.34. However at higher pHs the models were less successful. Both ROM and Al competition had a significant effect on model predictions. ROM was the dominant adsorption phase at pHs between 3.0 and 5.0. For pH > 5.0, Pb adsorption to Fe (hydr)oxides became significant. The modelling approach presented in this study can be used to understand and quantitatively predict Pb adsorption on soil.

Additional keywords: lead(II), partition coefficient, reactive organic matter, Stockholm Humic Model.


References

[1]  R. P. T. Janssen, W. Peijnenburg, L. Posthuma, M. VandenHoop, Equilibrium partitioning of heavy metals in Dutch field soils.1. Relationship between metal partition coefficients and soil characteristics. Environ. Toxicol. Chem. 1997, 16, 2470.
Equilibrium partitioning of heavy metals in Dutch field soils.1. Relationship between metal partition coefficients and soil characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslWkur0%3D&md5=2a052f6440c9cdeba5cdc52a3a422dbcCAS |

[2]  S. Sauvé, W. Hendershot, H. E. Allen, Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ. Sci. Technol. 2000, 34, 1125.
Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter.Crossref | GoogleScholarGoogle Scholar |

[3]  S. Sauvé, S. Manna, M. C. Turmel, A. G. Roy, F. Courchesne, Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ. Sci. Technol. 2003, 37, 5191.
Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil.Crossref | GoogleScholarGoogle Scholar | 14655707PubMed |

[4]  L. P. Weng, E. J. M. Temminghoff, W. H. van Riemsdijk, Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Technol. 2001, 35, 4436.
Contribution of individual sorbents to the control of heavy metal activity in sandy soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlGru74%3D&md5=b10dd453dbcbc041c7e86e0ab1dca2c5CAS |

[5]  E. Tipping, J. Rieuwerts, G. Pan, M. R. Ashmore, S. Lofts, M. T. R. Hill, M. E. Farago, I. Thornton, The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut. 2003, 125, 213.
The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2gsrw%3D&md5=7450d5cdf31d7679bc2b53b2e5328395CAS | 12810315PubMed |

[6]  J. P. Gustafsson, P. Pechova, D. Berggren, Modeling metal binding to soils: the role of natural organic matter. Environ. Sci. Technol. 2003, 37, 2767.
Modeling metal binding to soils: the role of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsleisbw%3D&md5=c45bc5e5727fcbe6af2e364e5a43dcf1CAS | 12854717PubMed |

[7]  J. P. Gustafsson, C. Tiberg, A. Edkymish, D. B. Kleja, Modelling lead(II) sorption to ferrihydrite and soil organic matter. Environ. Chem. 2011, 8, 485.
Modelling lead(II) sorption to ferrihydrite and soil organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlykt73N&md5=6020528280c3c8cd70af7836842df70aCAS |

[8]  D. A. Dzombak, F. M. M. Morel, Surface Complexation Modelling: Hydrous Ferric Oxide 1990 (Wiley-Interscience: New York).

[9]  T. Hiemstra, W. H. van Riemsdijk, A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interface Sci. 1996, 179, 488.
A surface structural approach to ion adsorption: the charge distribution (CD) model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFOjur0%3D&md5=8dc34da29b527ef503ef47984c0af4dcCAS |

[10]  E. Tipping, Humic Ion-Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
Humic Ion-Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=a7ea9cecaf5316d13c8f0be886492717CAS |

[11]  E. Tipping, S. Lofts, J. E. Sonke, Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem. 2011, 8, 225.
Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVWrsL0%3D&md5=7a08299f57766b8d8c92c3f5bad4cce0CAS |

[12]  D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf. 1999, 151, 147.
Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvV2ns7g%3D&md5=7d467a3cc7a20d049e7898ddca1b6aa3CAS |

[13]  J. P. Gustafsson, Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interface Sci. 2001, 244, 102.
Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1KisLw%3D&md5=8be79900cee7992c2589c2fd999dab29CAS |

[14]  F. J. Stevenson, Humus Chemistry, 2nd edn 1994 (Wiley: New York).

[15]  D. G. Lumsdon, Partitioning of organic carbon, aluminum and cadmium between solid and solution in soils: application of a mineral-humic particle additivity model. Eur. J. Soil Sci. 2004, 55, 271.
Partitioning of organic carbon, aluminum and cadmium between solid and solution in soils: application of a mineral-humic particle additivity model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFCks7o%3D&md5=7b4249303d85c3200eb34f0b9569a699CAS |

[16]  J. J. Dijkstra, J. C. L. Meeussen, R. N. J. Comans, Leaching of heavy metals from contaminated soils: an experimental and modeling study. Environ. Sci. Technol. 2004, 38, 4390.
Leaching of heavy metals from contaminated soils: an experimental and modeling study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltl2mtrg%3D&md5=f1cd2148497981eb7d6c54220b617c1eCAS | 15382869PubMed |

[17]  Z. Shi, H. E. Allen, D. M. Di Toro, S.-Z. Lee, D. M. F. Meza, S. Lofts, Predicting cadmium adsorption on soils using WHAM VI. Chemosphere 2007, 69, 605.
Predicting cadmium adsorption on soils using WHAM VI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGlt74%3D&md5=9fa3a1520f7c579ea0352a8f33f69264CAS | 17459454PubMed |

[18]  Z. Shi, D. M. Di Toro, H. E. Allen, D. L. Sparks, A General Model for Kinetics of Heavy Metal Adsorption and Desorption on Soils. Environ. Sci. Technol. 2013, 47, 3761.
A General Model for Kinetics of Heavy Metal Adsorption and Desorption on Soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVKktbs%3D&md5=a6dfa9d8b3092cb23a43fee32adfed4dCAS | 23484592PubMed |

[19]  J. P. Gustafsson, J. W. J. van Schaik, Cation binding in a mor layer: batch experiments and modelling. Eur. J. Soil Sci. 2003, 54, 295.
Cation binding in a mor layer: batch experiments and modelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFGqtL0%3D&md5=9ca24ca6e9ce95b218a9fe0335c90797CAS |

[20]  J. D. MacDonald, W. H. Hendershot, Modelling trace metal partitioning in forest floors of northern soils near metal smelters. Environ. Pollut. 2006, 143, 228.
Modelling trace metal partitioning in forest floors of northern soils near metal smelters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Ols7w%3D&md5=8428e212d72f4d202fe5e1369e089762CAS | 16448733PubMed |

[21]  E. Fest, E. J. M. Temminghoff, J. Griffioen, B. Van Der Grift, W. H. Van Riemsdijk, Groundwater chemistry of Al under Dutch sandy soils: effects of land use and depth. Appl. Geochem. 2007, 22, 1427.
Groundwater chemistry of Al under Dutch sandy soils: effects of land use and depth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVCrsrg%3D&md5=3b5f565ff86a43a7dc2efc44a17e019aCAS |

[22]  E. Tipping, Modelling Al competition for heavy metal binding by dissolved organic matter in soil and surface waters of acid and neutral pH. Geoderma 2005, 127, 293.
Modelling Al competition for heavy metal binding by dissolved organic matter in soil and surface waters of acid and neutral pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1yhsr4%3D&md5=c7c6f5ada5a4cddfe42e6acf263c63daCAS |

[23]  J. P. Gustafsson, I. Persson, D. B. Kleja, J. W. J. Van Schaik, Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling. Environ. Sci. Technol. 2007, 41, 1232.
Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVCgug%3D%3D&md5=a084e04989b6a4f9a85ad4744189b835CAS | 17593724PubMed |

[24]  W. L. Lindsay, Chemical Equilibria in Soils 1979 (Wiley: New York).

[25]  J. P. Gustafsson, Visual MINTEQ ver. 3.0 2010. Available at http://www2.lwr.kth.se/English/OurSoftware/Vminteq/index.html [Verified 16 June 2013].

[26]  S. Z. Lee, H. E. Allen, C. P. Huang, D. L. Sparks, P. F. Sanders, W. J. G. M. Peijnenburg, Predicting soil-water partition coefficients for cadmium. Environ. Sci. Technol. 1996, 30, 3418.
Predicting soil-water partition coefficients for cadmium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVWhsbo%3D&md5=6198c3e45f5ac31af99fc2b01bf1d472CAS |

[27]  S. Z. Lee, Chemical Interactions between Heavy Metals and Soils 1993 (University Microfilms International: Ann Arbor, MI).

[28]  A. K. Karamalidis, D. A. Dzombak, Surface complexation modeling: Gibbsite 2010 (Wiley: New York).

[29]  J. P. Gustafsson, D. B. Kleja, Modeling salt-dependent proton binding by organic soils with the MICA-Donnan and Stockholm Humic models. Environ. Sci. Technol. 2005, 39, 5372.
Modeling salt-dependent proton binding by organic soils with the MICA-Donnan and Stockholm Humic models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVejuro%3D&md5=d7453637ecb107688b5146acdf603abcCAS | 16082968PubMed |

[30]  D. G. Strawn, D. L. Sparks, Effects of soil organic matter on the kinetics and mechanisms of PbII sorption and desorption in soil. Soil Sci. Soc. Am. J. 2000, 64, 144.
Effects of soil organic matter on the kinetics and mechanisms of PbII sorption and desorption in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslyhtr0%3D&md5=3073f672625996a239c91a737f530790CAS |

[31]  E. J. Elzinga, D. Peak, D. L. Sparks, Spectroscopic studies of PbII-sulfate interactions at the goethite-water interface. Geochim. Cosmochim. Acta 2001, 65, 2219.
Spectroscopic studies of PbII-sulfate interactions at the goethite-water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVWnu7g%3D&md5=a07285ebe5f579a01b9a6bd4dfca74f8CAS |

[32]  D. G. Strawn, A. M. Scheidegger, D. L. Sparks, Kinetics and mechanisms of PbII sorption and desorption at the aluminum oxide water interface. Environ. Sci. Technol. 1998, 32, 2596.
Kinetics and mechanisms of PbII sorption and desorption at the aluminum oxide water interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVKjsLk%3D&md5=68e994706ab317c922e7cb8b864423a6CAS |

[33]  Z. Shi, E. Peltier, D. L. Sparks, Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation. Environ. Sci. Technol. 2012, 46, 2212.
Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlyls7Y%3D&md5=e4b4bb5091646840118da6f2a67a2385CAS | 22283487PubMed |

[34]  J. D. Ostergren, T. P. Trainor, J. R. Bargar, G. E. Brown, G. A. Parks, Inorganic ligand effects on PbII sorption to goethite (alpha-FeOOH) – I. Carbonate. J. Colloid Interface Sci. 2000, 225, 466.
Inorganic ligand effects on PbII sorption to goethite (alpha-FeOOH) – I. Carbonate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFWhs7o%3D&md5=f116d50192608acdf0e48fc1b23a7294CAS | 11254287PubMed |

[35]  G. M. Hettiarachchi, G. M. Pierzynski, M. D. Ransom, In situ stabilization of soil lead using phosphorus and manganese oxide. Environ. Sci. Technol. 2000, 34, 4614.
In situ stabilization of soil lead using phosphorus and manganese oxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmvValsrw%3D&md5=fe02d4e5ad7f88aa6f9511153c3a0492CAS |

[36]  J. W. Tonkin, L. S. Balistrieri, J. W. Murray, Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl. Geochem. 2004, 19, 29.
Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWgsLY%3D&md5=403b80dfeafadb9b9de9a255e4503769CAS |

[37]  E. Tipping, WHAM – a chemical-equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site electrostatic model of ion-binding by humic substances. Comput. Geosci. 1994, 20, 973.
WHAM – a chemical-equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site electrostatic model of ion-binding by humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlyhtrY%3D&md5=2bbd645ec0490de7925baa2b7db6d07cCAS |

[38]  E. Tipping, A. J. Lawlor, S. Lofts, L. Shotbolt, Simulating the long-term chemistry of an upland UK catchment: heavy metals. Environ. Pollut. 2006, 141, 139.
Simulating the long-term chemistry of an upland UK catchment: heavy metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis1WgsbY%3D&md5=825dff6784c841571796911edd9fe526CAS | 16219402PubMed |

[39]  B. Cancès, M. Ponthieu, M. Castrec-Rouelle, E. Aubry, M. F. Benedetti, Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma 2003, 113, 341.
Metal ions speciation in a soil and its solution: experimental data and model results.Crossref | GoogleScholarGoogle Scholar |

[40]  S. Lofts, E. Tipping, Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs. Environ. Chem. 2011, 8, 501.
Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlykt73J&md5=c84d9b8c7b838beef7dffd60ba77a35bCAS |