Organic phosphorus in the aquatic environment
Darren S. BaldwinCSIRO Land and Water and the Murray–Darling Freshwater Research Centre, La Trobe University, PO Box 991, Wodonga, Vic. 3689, Australia. Email: darren.baldwin@csiro.au
Darren Baldwin is a biogeochemist based at the Murray–Darling Freshwater in Wodonga, Australia. His current research examines how natural and human-induced perturbations affect the movement and transformation of carbon and nutrients in aquatic ecosystems. |
Environmental Chemistry 10(6) 439-454 https://doi.org/10.1071/EN13151
Submitted: 8 August 2013 Accepted: 21 October 2013 Published: 19 December 2013
Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND
Environmental context. Organic phosphorus can be one of the major fractions of phosphorus in many aquatic ecosystems. This paper discusses the distribution, cycling and ecological significance of five major classes of organic P in the aquatic environment and discusses several principles to guide organic P research into the future.
Abstract. Organic phosphorus can be one of the major fractions of phosphorus in many aquatic ecosystems. Unfortunately, in many studies the ‘organic’ P fraction is operationally defined. However, there are an increasing number of studies where the organic P species have been structurally characterised – in part because of the adoption of 31P NMR spectroscopic techniques. There are five classes of organic P species that have been specifically identified in the aquatic environment – nucleic acids, other nucleotides, inositol phosphates, phospholipids and phosphonates. This paper explores the identification, quantification, biogeochemical cycling and ecological significance of these organic P compounds. Based on this analysis, the paper then identifies a number of principles which could guide the research of organic P into the future. There is an ongoing need to develop methods for quickly and accurately identifying and quantifying organic P species in the environment. The types of ecosystems in which organic P dynamics are studied needs to be expanded; flowing waters, floodplains and small wetlands are currently all under-represented in the literature. While enzymatic hydrolysis is an important transformation pathway for the breakdown of organic P, more effort needs to be directed towards studying other potential transformation pathways. Similarly effort should be directed to estimating the rates of transformations, not simply reporting on the concentrations. And finally, further work is needed in elucidating other roles of organic P in the environment other than simply a source of P to aquatic organisms.
Additional keywords: 31P NMR, analysis, eutrophication, freshwater, marine, reactive phosphorus, sediment, soil, virus.
References
[1] B. L. Turner, Appendix. Organic phosphorus compounds in the environment, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 381–388 (CABI: Cambridge, MA).[2] A. M. Mitchell, D. S. Baldwin, Organic phosphorus in the aquatic environment: speciation, transformations and interactions with nutrient cycles, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 309–324 (CABI: Cambridge, MA).
[3] S. Newman, J. S. Robinson, Forms of organic phosphorus in water, soils, and sediments, in Phosophorus Biogeochemistry in Subtropical Ecosystems (Eds K. R. Reddy, G. A. O’Connor, C. L. Schelske) 1999, pp. 207–223 (Crc Press-Taylor & Francis Group: Boca Raton, FL).
[4] I. D. McKelvie, Separation, preconcentration and speciation of organic phosphorus in environmental samples, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 1–20 (CABI: Cambridge, MA).
[5] P. J. Worsfold, P. Monbet, A. D. Tappin, M. F. Fitzsimons, D. A. Stiles, I. D. McKelvie, Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: a review. Anal. Chim. Acta 2008, 624, 37.
| Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWksb%2FF&md5=3d091d393733715ce553145cb1624a0fCAS | 18706309PubMed |
[6] F. Kizewski, Y. T. Liu, A. Morris, D. Hesterberg, Spectroscopic approaches for phosphorus speciation in soils and other environmental systems. J. Environ. Qual. 2011, 40, 751.
| Spectroscopic approaches for phosphorus speciation in soils and other environmental systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1Oqsbk%3D&md5=ce1470a95f1d66a5046e7f296f728a85CAS | 21546661PubMed |
[7] L. M. Condron, S. Newman, Revisiting the fundamentals of phosphorus fractionation of sediments and soils. J. Soils Sediments 2011, 11, 830.
| Revisiting the fundamentals of phosphorus fractionation of sediments and soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1ehsbk%3D&md5=6f353d86a4bbc95bcc08143d1cfcd887CAS |
[8] Standard Methods for the Examination of Water and Wastewater 2012 (American Public Health Association: Baltimore MD).
[9] D. S. Baldwin, Reactive ‘organic’ phosphorus revisited. Water Res. 1998, 32, 2265.
| Reactive ‘organic’ phosphorus revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVeht7c%3D&md5=3b7317a5283729901235c60fc0afcfbbCAS |
[10] F. H. Denison, P. M. Haygarth, W. A. House, A. W. Bristow, The measurement of dissolved phosphorus compounds: evidence for hydrolysis during storage and implications for analytical definitions in environmental analysis. Int. J. Environ. Anal. Chem. 1998, 69, 111.
| The measurement of dissolved phosphorus compounds: evidence for hydrolysis during storage and implications for analytical definitions in environmental analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsV2murs%3D&md5=0ff3ada288c590316091f50eba99929bCAS |
[11] W. T. Cooper, J. M. Llewelyn, G. L. Bennett, A. C. Stenson, V. J. M. Salters, Organic phosphorus speciation in natural waters by mass spectrometry, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 45–74 (CABI: Cambridge, MA).
[12] A. L. Shober, D. L. Hesterberg, J. T. Sims, S. Gardner, Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. J. Environ. Qual. 2006, 35, 1983.
| Characterization of phosphorus species in biosolids and manures using XANES spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yltrvO&md5=3fc402d823d361a4b9728a4a078a827eCAS | 17071866PubMed |
[13] S. Keller, T. Q. Zhang, S. Webb, R. Brugam, K. Johnson, Z. Q. Lin, Effects of suburban land use on phosphorus fractions and speciation in the Upper Peruque Creek, Eastern Missouri. Water Environ. Res. 2008, 80, 316.
| Effects of suburban land use on phosphorus fractions and speciation in the Upper Peruque Creek, Eastern Missouri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSis7vJ&md5=1ef59beea0664869c85feef328b4c71eCAS | 18536482PubMed |
[14] B. J. Cade-Menun, Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize organic phosphorus in environmental samples, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 21–44 (CABI: Cambridge, MA).
[15] K. C. Ruttenberg, Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 1992, 37, 1460.
| Development of a sequential extraction method for different forms of phosphorus in marine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVShsr8%3D&md5=20c0f9ab5dd487f73e3d8426eefb6192CAS |
[16] D. A. Francko, R. T. Heath, UV-sensitive complex phosphorus – association with dissolved humic material and iron in a bog lake. Limnol. Oceanogr. 1982, 27, 564.
| UV-sensitive complex phosphorus – association with dissolved humic material and iron in a bog lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xks1SmsLc%3D&md5=4166e9eb7e5ba788f471e2619aa59e63CAS |
[17] P. J. Shaw, R. I. Jones, H. De Haan, The influence of humic substances on the molecular weight distributions of phosphate and iron in epilimnetic lake waters. Freshwater Biol. 2000, 45, 383.
| The influence of humic substances on the molecular weight distributions of phosphate and iron in epilimnetic lake waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVOksw%3D%3D&md5=7f7fb8ebeac093e38d221073ef18aaa1CAS |
[18] R. A. Minear, Characterization of naturally occuring dissolved organophosphorus compounds. Environ. Sci. Technol. 1972, 6, 431.
| Characterization of naturally occuring dissolved organophosphorus compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhsFyisrw%3D&md5=e60018e21234201ab7ef06ab49c9ce88CAS |
[19] M. D. Bailiff, D. M. Karl, Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986–87. Deep-Sea Res. A, Oceanogr. Res. Pap. 1991, 38, 1077.
| Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986–87.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XislCnsA%3D%3D&md5=055ab33a2baec95c7f890a293d0006f2CAS |
[20] W. Siuda, R. J. Chróst, Concentration and susceptibility of dissolved DNA for enzyme degradation in lake water – some methodological remarks. Aquat. Microb. Ecol. 2000, 21, 195.
| Concentration and susceptibility of dissolved DNA for enzyme degradation in lake water – some methodological remarks.Crossref | GoogleScholarGoogle Scholar |
[21] S. Sakano, A. Kamatani, Determination of dissolved nucleic acids in seawater by the fluoresence dye ethidium bromide. Mar. Chem. 1992, 37, 239.
| Determination of dissolved nucleic acids in seawater by the fluoresence dye ethidium bromide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisVWlsL8%3D&md5=886e31291948ce055ce29a6635e94a3eCAS |
[22] B. L. Turner, N. Mahieu, L. M. Condron, Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts. Soil Sci. Soc. Am. J. 2003, 67, 497.
| Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslChsLo%3D&md5=c86a40dd5782f309bef0d2b71dde3971CAS |
[23] W. Siuda, R. J. Chróst, H. Gude, Distribution and origin of dissolved DNA in lakes of different trophic states. Aquat. Microb. Ecol. 1998, 15, 89.
| Distribution and origin of dissolved DNA in lakes of different trophic states.Crossref | GoogleScholarGoogle Scholar |
[24] T. J. C. Beebee, Identification and analysis of nucleic-acids in natural fresh-waters. Sci. Total Environ. 1993, 135, 123.
| Identification and analysis of nucleic-acids in natural fresh-waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsFKiur4%3D&md5=f72ad57f7b8c4d22231c85ac62dbe0efCAS |
[25] K. Reitzel, H. S. Jensen, M. Flindt, F. O. Andersen, Identification of dissolved nonreactive phosphorus in freshwater by precipitation with aluminum and subsequent 31P NMR analysis. Environ. Sci. Technol. 2009, 43, 5391.
| Identification of dissolved nonreactive phosphorus in freshwater by precipitation with aluminum and subsequent 31P NMR analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVWns7s%3D&md5=5936ed3e17ac31eca111ff26297fc981CAS | 19708371PubMed |
[26] K. Reitzel, J. Ahlgren, H. DeBrabandere, M. Waldeback, A. Gogoll, L. Tranvik, E. Rydin, Degradation rates of organic phosphorus in lake sediment. Biogeochem. 2007, 82, 15.
| Degradation rates of organic phosphorus in lake sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislWktrw%3D&md5=b1dce6043988f20280b448df67b335a6CAS |
[27] D. S. Baldwin, The phosphorus composition of a diverse series of Australian sediments. Hydrobiol 1996, 335, 63.
| The phosphorus composition of a diverse series of Australian sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVarsw%3D%3D&md5=cbe87883a037621e577e26499b8d798eCAS |
[28] B. L. Turner, S. Newman, J. M. Newman, Organic phosphorus sequestration in subtropical treatment wetlands. Environ. Sci. Technol. 2006, 40, 727.
| Organic phosphorus sequestration in subtropical treatment wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCgsrvL&md5=4f18af6ea5eca3fffe3332472e6cd324CAS | 16509310PubMed |
[29] R. Shinohara, A. Imai, N. Kawasaki, K. Komatsu, A. Kohzu, S. Miura, T. Sano, T. Satou, N. Tomioka, Biogenic phosphorus compounds in sediment and suspended particles in a shallow eutrophic lake: a 31P-nuclear magnetic resonance (31P NMR) study. Environ. Sci. Technol. 2012, 46, 10572.
| Biogenic phosphorus compounds in sediment and suspended particles in a shallow eutrophic lake: a 31P-nuclear magnetic resonance (31P NMR) study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOjt73J&md5=0a0aac7b5326d58051210f4f4f249925CAS | 22994917PubMed |
[30] J. Vestergren, A. G. Vincent, M. Jansson, P. Persson, U. Istedt, G. Grobner, R. Giesler, J. Schleucher, High-Resolution characterization of organic phosphorus in soil extracts using 2D 1H–31P NMR Correlation Spectroscopy. Environ. Sci. Technol. 2012, 46, 3950.
| High-Resolution characterization of organic phosphorus in soil extracts using 2D 1H–31P NMR Correlation Spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlGlu74%3D&md5=8cfd3689006d544087437aede917f151CAS | 22394413PubMed |
[31] A. G. Bravo, W. Wildi, J. Pote, Kinetics of plant material mass loss and DNA release in freshwater column. Ecotoxicol. Environ. Saf. 2010, 73, 1548.
| Kinetics of plant material mass loss and DNA release in freshwater column.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wmu7fL&md5=c4c63fd248a756d0b1fdac32ef284e31CAS | 20570352PubMed |
[32] V. Turk, A. S. Rehnstam, E. Lundberg, A. Hagstrom, Release of bacterial DNA by marine nanoflagellates: an intermediate step in phosphorus regeneration. Appl. Environ. Microbiol. 1992, 58, 3744.
| 1:CAS:528:DyaK3sXjs1aq&md5=72f242d446166178ab0cb7acb7382facCAS | 16348813PubMed |
[33] S. C. Jiang, J. H. Paul, Viral contribution to dissolved DNA in the marine environment as determined by differential centrifugation and kingdom probing. Appl. Environ. Microbiol. 1995, 61, 317.
| 1:CAS:528:DyaK2MXivVaksL8%3D&md5=ab05b72cf5332be2b8394f22c6f88f84CAS | 16534913PubMed |
[34] W. Reisser, S. Grein, C. Krambeck, Extracellular DNA in aquatic ecosystems may in part be due to phycovirus activity. Hydrobiol 1993, 252, 199.
| Extracellular DNA in aquatic ecosystems may in part be due to phycovirus activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktlersLk%3D&md5=8d64f5fe10e184ab810cc8f309b7c20aCAS |
[35] M. C. Alonso, V. Rodriguez, J. Rodriguez, J. J. Borrego, Role of ciliates, flagellates and bacteriophages on the mortality of marine bacteria and on dissolved-DNA concentration in laboratory experimental systems. J. Exp. Mar. Biol. Ecol. 2000, 244, 239.
| Role of ciliates, flagellates and bacteriophages on the mortality of marine bacteria and on dissolved-DNA concentration in laboratory experimental systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVWntrc%3D&md5=cf6d68fb8348199236d15292ccbf789bCAS |
[36] W. Siuda, H. Gude, Determination of dissolved deoxyribonucleic acid concentration in lake water. Aquat. Microb. Ecol. 1996, 11, 193.
| Determination of dissolved deoxyribonucleic acid concentration in lake water.Crossref | GoogleScholarGoogle Scholar |
[37] N. Ishii, Z. Kawabata, S. Nakano, M. G. Min, R. Takata, Microbial interactions responsible for dissolved DNA production in a hypereutrophic pond. Hydrobiol 1998, 380, 67.
| Microbial interactions responsible for dissolved DNA production in a hypereutrophic pond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVWhsLo%3D&md5=21e70e52d3c257e471773243e23e2ed3CAS |
[38] L. Riemann, K. Holmfeldt, J. Titelman, Importance of viral lysis and dissolved DNA for bacterioplankton activity in a P-limited estuary, northern Baltic Sea. Microb. Ecol. 2009, 57, 286.
| Importance of viral lysis and dissolved DNA for bacterioplankton activity in a P-limited estuary, northern Baltic Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFelurc%3D&md5=361247eda63b48efe4ca55fdbb2797c6CAS | 18670729PubMed |
[39] J. Titelman, L. Riemann, K. Holmfeldt, T. Nilsen, Copepod feeding stimulates bacterioplankton activities in a low phosphorus system. Aquat. Biol. 2008, 2, 131.
| Copepod feeding stimulates bacterioplankton activities in a low phosphorus system.Crossref | GoogleScholarGoogle Scholar |
[40] G. E. Pinchuk, C. Ammons, D. E. Culley, S. M. W. Li, J. S. McLean, M. F. Romine, K. H. Nealson, J. K. Fredrickson, A. S. Beliaev, Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Appl. Environ. Microbiol. 2008, 74, 1198.
| Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yqsL4%3D&md5=5e1749b81a95f5aabacaa7b05e482d08CAS | 18156329PubMed |
[41] M. Heun, L. Binnenkade, M. Kreienbaum, K. M. Thormann, Functional specificity of extracellular nucleases of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 2012, 78, 4400.
| Functional specificity of extracellular nucleases of Shewanella oneidensis MR-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKgt70%3D&md5=00e1999da5dcaf7ec82d383dc7ff37daCAS | 22492434PubMed |
[42] D. S. Baldwin, J. K. Beattie, L. M. Coleman, D. R. Jones, Phosphate ester hydrolysis facilitated by mineral phases. Environ. Sci. Technol. 1995, 29, 1706.
| Phosphate ester hydrolysis facilitated by mineral phases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFersbg%3D&md5=d6f9313b4ec8e9f216b343b79c9993b8CAS | 22276899PubMed |
[43] J. D. T. Arruda-Neto, L. Nieto, H. Righi, M. A. Cotta, H. Carrer, T. E. Rodrigues, G. C. Genofre, Fragmentation of extracellular DNA by long-term exposure to radiation from uranium in aquatic environments. J. Environ. Monit. 2012, 14, 2108.
| Fragmentation of extracellular DNA by long-term exposure to radiation from uranium in aquatic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSitL7I&md5=15286235fc06946730c15906f5450d35CAS |
[44] K. Reitzel, J. Ahlgren, E. Rydin, S. Egemose, B. L. Turner, M. Hupfer, Diagenesis of settling seston: identity and transformations of organic phosphorus. J. Environ. Monit. 2012, 14, 1098.
| Diagenesis of settling seston: identity and transformations of organic phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFOlurY%3D&md5=3246031d592757682789e8ee4c71ac1cCAS | 22344567PubMed |
[45] G. W. Beall, D. S. Sowersby, R. D. Roberts, M. H. Robson, L. K. Lewis, Analysis of oligonucleotide DNA binding and sedimentation properties of montmorillonite clay using ultraviolet light spectroscopy. Biomacromolecules 2009, 10, 105.
| Analysis of oligonucleotide DNA binding and sedimentation properties of montmorillonite clay using ultraviolet light spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOjsLzK&md5=58335be1a099d29a40427f4b445043e2CAS | 19061334PubMed |
[46] L. Celi, E. Barberis, Abiotic stabilization of organic phosphorus in the environment, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 113–132 (CABI: Cambridge, MA).
[47] J. Ahlgren, K. Reitzel, L. Tranvik, A. Gogoll, E. Rydin, Degradation of organic phosphorus compounds in anoxic Baltic Sea sediments: a 31P nuclear magnetic resonance study. Limnol. Oceanogr. 2006, 51, 2341.
| Degradation of organic phosphorus compounds in anoxic Baltic Sea sediments: a 31P nuclear magnetic resonance study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOju7fI&md5=517e781d85e45b0e30b7efe11aa5ae41CAS |
[48] A. Dell'Anno, R. Danovaro, Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 2005, 309, 2179.
| Extracellular DNA plays a key role in deep-sea ecosystem functioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKgtLrI&md5=34096a42cd7deb1ea9938c22131bd4b2CAS | 16195451PubMed |
[49] T. Løvdal, T. Tanaka, T. F. Thingstad, Algal–bacterial competition for phosphorus from dissolved DNA, ATP, and orthophosphate in a mesocosm experiment. Limnol. Oceanogr. 2007, 52, 1407.
| Algal–bacterial competition for phosphorus from dissolved DNA, ATP, and orthophosphate in a mesocosm experiment.Crossref | GoogleScholarGoogle Scholar |
[50] K. C. Ruttenberg, D. J. Sulak, Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater. Geochim. Cosmochim. Acta 2011, 75, 4095.
| Sorption and desorption of dissolved organic phosphorus onto iron (oxyhydr)oxides in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotleksL8%3D&md5=9504aa8272292424b9cf613d55698d51CAS |
[51] U. Böckelmann, A. Janke, R. Kuhn, T. R. Neu, J. Wecke, J. R. Lawrence, U. Szewzyk, Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol. Lett. 2006, 262, 31.
| Bacterial extracellular DNA forming a defined network-like structure.Crossref | GoogleScholarGoogle Scholar | 16907736PubMed |
[52] J. Gödeke, K. Paul, J. Lassak, K. M. Thormann, Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J. 2011, 5, 613.
| Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1.Crossref | GoogleScholarGoogle Scholar | 20962878PubMed |
[53] A. Seper, V. H. I. Fengler, S. Roier, H. Wolinski, S. D. Kohlwein, A. L. Bishop, A. Camilli, J. Reidl, S. Schild, Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol. Microbiol. 2011, 82, 1015.
| Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyhu7bP&md5=496fdd7da97b23687d05e69ce1bb54c7CAS | 22032623PubMed |
[54] E. J. Monaghan, K. C. Ruttenberg, Dissolved organic phosphorus in the coastal ocean: reassessment of available methods and seasonal phosphorus profiles from the Eel River Shelf. Limnol. Oceanogr. 1999, 44, 1702.
| Dissolved organic phosphorus in the coastal ocean: reassessment of available methods and seasonal phosphorus profiles from the Eel River Shelf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVWisLs%3D&md5=32633ee24d82f80fc58c65de33b6f589CAS |
[55] K. M. Björkman, D. M. Karl, Presence of dissolved nucleotides in the North Pacific Subtropical Gyre and their role in cycling of dissolved organic phosphorus. Aquat. Microb. Ecol. 2005, 39, 193.
| Presence of dissolved nucleotides in the North Pacific Subtropical Gyre and their role in cycling of dissolved organic phosphorus.Crossref | GoogleScholarGoogle Scholar |
[56] D. A. Francko, R. G. Wetzel, The isolation of cyclic adenosine 3′–5′-monophosphate (cAMP) from lakes of different trophic status – correlation with planktonic metabolic variables. Limnol. Oceanogr. 1982, 27, 27.
| The isolation of cyclic adenosine 3′–5′-monophosphate (cAMP) from lakes of different trophic status – correlation with planktonic metabolic variables.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xht12hurw%3D&md5=3c8d650a85be72f2a79c7413e3da99b8CAS |
[57] M. P. Nawrocki, D. M. Karl, Dissolved ATP turnover in Bransfield Strait, Antarctica during a spring bloom. Mar. Ecol. Prog. Ser. 1989, 57, 35.
| Dissolved ATP turnover in Bransfield Strait, Antarctica during a spring bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFWlurg%3D&md5=8743b64699b91968af4ae6646261b8edCAS |
[58] A. G. Gilman, Protein binding assays for cyclic nucleotides. Adv. Cyclic Nucleotide Res. 1972, 2, 9.
| 1:CAS:528:DyaE3sXotFygtg%3D%3D&md5=cf9ad43c47b64fc41516424cade99f55CAS | 4352300PubMed |
[59] H. De Brabandere, N. Forsgard, L. Israelsson, J. Petterson, E. Rydin, M. Waldeback, P. J. R. Sjoberg, Screening for organic phosphorus compounds in aquatic sediments by liquid chromatography coupled to ICP-AES and ESI-MS/MS. Anal. Chem. 2008, 80, 6689.
| Screening for organic phosphorus compounds in aquatic sediments by liquid chromatography coupled to ICP-AES and ESI-MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVyrsb8%3D&md5=00bfe6f6248541fe81aedc1bc1143fb3CAS | 18665609PubMed |
[60] F. Azam, R. E. Hodson, Dissolved ATP in the sea and its utilization by marine bacteria. Nature 1977, 267, 696.
| Dissolved ATP in the sea and its utilization by marine bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXktFemtg%3D%3D&md5=c0a7d1b9be002cae848c2355dd9a72f4CAS | 876388PubMed |
[61] A. Bruns, U. Nubel, H. Cypionka, J. Overmann, Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl. Environ. Microbiol. 2003, 69, 1980.
| Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFKru7s%3D&md5=aeb5b8efa086ef7882b6be72d15018ccCAS | 12676673PubMed |
[62] A. Bruns, H. Cypionka, J. Overmann, Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl. Environ. Microbiol. 2002, 68, 3978.
| Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVejsrY%3D&md5=7013a853bcf05d0e382a84ef3ba8e87dCAS | 12147499PubMed |
[63] R. T. Heath, Microbial turnover of organic phosphorus in aquatic systems, in Organic Phosphorus in the Environment (Eds B. L. Turner, E. Frossard, D. S. Baldwin) 2005, pp. 185–204 (CABI: Cambridge, MA).
[64] B. L. Turner, M. J. Paphazy, P. M. Haygarth, I. D. McKelvie, Inositol phosphates in the environment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357, 449.
| Inositol phosphates in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVSls7k%3D&md5=8d30c32fdff616c7fadeb3d3c9a2f944CAS | 12028785PubMed |
[65] I. D. McKelvie, Inositol phosphates in aquatic systems, in Inositol Phosphates: Linking Agriculture and the Environment (Eds B. L. Turner, A. E. Richardson, E. J. Mullaney) 2007, pp. 261–278 (CABI: Cambridge, MA).
[66] C. J. De Groot, H. L. Golterman, On the presence of organic phosphate in some Camargue sediments: evidence of the importance of phytate. Hydrobiol 1993, 252, 117.
| On the presence of organic phosphate in some Camargue sediments: evidence of the importance of phytate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktlersb8%3D&md5=bd3d30db2004aefba9841e9b41962227CAS |
[67] M. Suzumura, A. Kamatani, Isolation and determination of inositol hexaphosphate in sediments from Tokyo Bay. Geochim. Cosmochim. Acta 1993, 57, 2197.
| Isolation and determination of inositol hexaphosphate in sediments from Tokyo Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltVSisb8%3D&md5=2526a3f42f7e929238bab6b6394e2213CAS |
[68] H. El-Rifai, M. Heerboth, T. E. Gedris, S. Newman, W. Orem, W. T. Cooper, NMR and mass spectrometry of phosphorus in wetlands. Eur. J. Soil Sci. 2008, 59, 517.
| NMR and mass spectrometry of phosphorus in wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVOisrw%3D&md5=d7f719fbdccf07f6a59929dff1710f8dCAS |
[69] S. E. Herbes, H. E. Allen, K. H. Mancy, Enzymatic characterization of soluble reactive organic phosphorus in lake water. Science 1975, 187, 432.
| Enzymatic characterization of soluble reactive organic phosphorus in lake water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXovFyruw%3D%3D&md5=fe6f9c3b44197d89e0de809ab38f4d51CAS | 17835306PubMed |
[70] I. D. McKelvie, B. T. Hart, T. J. Cardwell, R. W. Cattrall, Use of imobilised phytase and flow injection for the determination of phosphorus species in natural waters. Anal. Chim. Acta 1995, 316, 277.
| Use of imobilised phytase and flow injection for the determination of phosphorus species in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1WltL8%3D&md5=b7e6525498096ec8924738eae425e86eCAS |
[71] P. Monbet, I. D. McKelvie, P. J. Worsfold, Dissolved organic phosphorus speciation in the waters of the Tamar estuary (SW England). Geochim. Cosmochim. Acta 2009, 73, 1027.
| Dissolved organic phosphorus speciation in the waters of the Tamar estuary (SW England).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1arurg%3D&md5=08b9310dab4de7faf08de70beced8e0cCAS |
[72] B. J. Cade-Menun, J. A. Navaratnam, M. R. Walbridge, Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy. Environ. Sci. Technol. 2006, 40, 7874.
| Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCqt7zO&md5=4e46f164e001112f10c0014d7e156cccCAS | 17256541PubMed |
[73] B. L. Turner, S. Newman, Phosphorus cycling in wetland soils: the importance of phosphate diesters. J. Environ. Qual. 2005, 34, 1921.
| Phosphorus cycling in wetland soils: the importance of phosphate diesters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygs7rK&md5=29e6a73f4a6de1989a5f133a7efde746CAS | 16151243PubMed |
[74] A. W. Cheesman, E. J. Dunne, B. L. Turner, K. R. Reddy, Soil phosphorus forms in hydrologically isolated wetlands and surrounding pasture uplands. J. Environ. Qual. 2010, 39, 1517.
| Soil phosphorus forms in hydrologically isolated wetlands and surrounding pasture uplands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslKmur4%3D&md5=2d6c988ae16a411f1bf8a76b3e5a1697CAS | 20830938PubMed |
[75] C. Jørgensen, H. S. Jensen, F. O. Andersen, S. Egemose, K. Reitzel, Occurrence of orthophosphate monoesters in lake sediments: significance of myo- and scyllo-inositol hexakisphosphate. J. Environ. Monit. 2011, 13, 2328.
| Occurrence of orthophosphate monoesters in lake sediments: significance of myo- and scyllo-inositol hexakisphosphate.Crossref | GoogleScholarGoogle Scholar | 21701742PubMed |
[76] B. L. Turner, K. Weckstrom, Phytate as a novel phosphorus-specific paleo-indicator in aquatic sediments. J. Paleolimnol. 2009, 42, 391.
| Phytate as a novel phosphorus-specific paleo-indicator in aquatic sediments.Crossref | GoogleScholarGoogle Scholar |
[77] L. Celi, E. Barberis, Abiotic reactions of inositol phosphates in soils, in Inositol Phosphates: Linking Agriculture and the Environment (Eds B. L. Turner, A. E. Richardson, E. J. Mullaney) 2007, pp. 207–220 (CABI: Cambridge, MA).
[78] B. L. Turner, Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol sterioisomers, in Inositol Phosphates: Linking Agriculture and the Environment (Eds B. L. Turner, A. E. Richardson, E. J. Mullaney) 2007, pp. 186–206 (CABI: Cambridge, MA).
[79] M. Suzumura, A. Kamatani, Origin and distribution of inositol hexaphosphate in estuarine and coastal sediments. Limnol. Oceanogr. 1995, 40, 1254.
| Origin and distribution of inositol hexaphosphate in estuarine and coastal sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xot1aksQ%3D%3D&md5=ab2abd10eb489bcb66c1da42ceb42fa7CAS |
[80] C. D. Giles, B. J. Cade-Menun, J. E. Hill, The inositol phosphates in soils and manures: abundance, cycling, and measurement. Can. J. Soil Sci. 2011, 91, 397.
| The inositol phosphates in soils and manures: abundance, cycling, and measurement.Crossref | GoogleScholarGoogle Scholar |
[81] V. Kumar, A. K. Sinha, H. P. S. Makkar, G. De Boeck, K. Becker, Phytate and phytase in fish nutrition. J. Anim. Physiol. Anim. Nutr. (Berl.) 2012, 96, 335.
| Phytate and phytase in fish nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt12jtLc%3D&md5=ef8747c590cccf2e877a3e12ee8d8dbeCAS | 21692871PubMed |
[82] C. A. Brearley, D. E. Hanke, Inositol phosphates in the duckweed Spirodela polyrhiza L. Biochem. J. 1996, 314, 215.
| 1:CAS:528:DyaK28XhtlKmtLw%3D&md5=da454a90e4836b3750ff954e6f465a82CAS | 8660286PubMed |
[83] R. Oren Benaroya, E. Zamski, E. Tel-Or, L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides. Plant Physiol. Biochem. 2004, 42, 97.
| L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWltrg%3D&md5=bc670d230fb45c2725b3b9d8a19ef0a0CAS |
[84] M. Reina, J. L. Espinar, L. Serrano, Sediment phosphate composition in relation to emergent macrophytes in the Donana Marshes (SW Spain). Water Res. 2006, 40, 1185.
| Sediment phosphate composition in relation to emergent macrophytes in the Donana Marshes (SW Spain).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Wrtbk%3D&md5=4d6a4a6bf03e3e89b773cacb8efaea2dCAS | 16529791PubMed |
[85] C. W. Cheng, B. L. Lim, Beta-propeller phytases in the aquatic environment. Arch. Microbiol. 2006, 185, 1.
| Beta-propeller phytases in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslOktbo%3D&md5=341d53df76a9ba6edfd419bd80076fcdCAS |
[86] B. L. Lim, P. Yeung, C. Cheng, J. E. Hill, Distribution and diversity of phytate-mineralizing bacteria. ISME J. 2007, 1, 321.
| Distribution and diversity of phytate-mineralizing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFSnsrk%3D&md5=746f979e00ea3970536c33203beb6d21CAS | 18043643PubMed |
[87] J. E. Hill, B. J. Cade-Menun, Phosphorus-31 nuclear magnetic resonance spectroscopy transect study of poultry operations on the Delmarva Peninsula. J. Environ. Qual. 2009, 38, 130.
| Phosphorus-31 nuclear magnetic resonance spectroscopy transect study of poultry operations on the Delmarva Peninsula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Shuw%3D%3D&md5=2a28533fa0aea2298254cede4985b27fCAS | 19141802PubMed |
[88] M. Suzumura, A. Kamatani, Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments – implications for the phosphorus cycle. Geochim. Cosmochim. Acta 1995, 59, 1021.
| Mineralization of inositol hexaphosphate in aerobic and anaerobic marine sediments – implications for the phosphorus cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksFGht7k%3D&md5=36d38f8224cb3eb4ba6b9502e3941893CAS |
[89] H. Golterman, J. Paing, L. Serrano, E. Gomez, Presence of and phosphate release from polyphosphates or phytate phosphate in lake sediments. Hydrobiol. 1998, 364, 99.
| Presence of and phosphate release from polyphosphates or phytate phosphate in lake sediments.Crossref | GoogleScholarGoogle Scholar |
[90] E. E. Roden, J. W. Edmonds, Phosphate mobilization in iron-rich anaerobic sediments: microbial FeIII oxide reduction versus iron-sulfide formation. Arch. Hydrobiol. 1997, 139, 347.
| 1:CAS:528:DyaK2sXksVOksbk%3D&md5=9d86dd8769cd70bd7a50a18354086d9aCAS |
[91] W. Siuda, R. J. Chróst, Utilization of selected dissolved organic phosphorus compounds by bacteria in lake water under non-limiting orthophosphate conditions. Pol. J. Environ. Stud. 2001, 10, 475.
| 1:CAS:528:DC%2BD38XhvVKmsA%3D%3D&md5=d5726a5b04609534e30e24239e2dea47CAS |
[92] M. Suzumura, Phospholipids in marine environments: a review. Talanta 2005, 66, 422.
| Phospholipids in marine environments: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVClt7g%3D&md5=441b5704074f5859a616c5ca02ae5dbfCAS | 18970003PubMed |
[93] P. I. Boon, P. Virtue, P. D. Nichols, Microbial consortia in wetland sediments: A biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Mar. Freshwater Res. 1996, 47, 27.
| Microbial consortia in wetland sediments: A biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis1Kru7s%3D&md5=758d1660d075a2c7e7feea449c19a2fcCAS |
[94] A. Sanseverino, M. D. Bastviken, I. Sundh, J. Pickova, A. Enrich-Prast, Methane carbon supports aquatic food webs to the fish level. PLoS ONE 2012, 7,
| Methane carbon supports aquatic food webs to the fish level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFyrurfI&md5=68b07d676d415ced738e705959dc3ceaCAS | 22880091PubMed |
[95] J. Handelsman, Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669.
| Metagenomics: application of genomics to uncultured microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFSgsQ%3D%3D&md5=41a13623f8d98cd3fbd7879d0ebb9d7bCAS | 15590779PubMed |
[96] M. Suzumura, E. D. Ingall, Concentrations of lipid phosphorus and its abundance in dissolved and particulate organic phosphorus in coastal seawater. Mar. Chem. 2001, 75, 141.
| Concentrations of lipid phosphorus and its abundance in dissolved and particulate organic phosphorus in coastal seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVOqsLg%3D&md5=d234dbcc317706b818b7a4971d4985a7CAS |
[97] O. Oku, A. Kamatani, Phospholipid in plankton samples from Tokyo Bay and Sagami Bay. Nippon Suisan Gakkai Shi 1995, 61, 588.
| Phospholipid in plankton samples from Tokyo Bay and Sagami Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslyrsb0%3D&md5=0cfba021119911773d482340202b0d24CAS |
[98] M. S. Mills, E. M. Thurman, J. Ertel, K. A. Thorn, Organic geochemistry and sources of natural aquatic foams, in Humic and Fulvic Acids: Isolation, Structure, and Environmental Role (Eds J. S. Gaffney, N. A. Marley, S. B. Clark) 1996, pp. 151–192 (American Chemical Society: Washington, DC).
[99] B. A. S. Van Mooy, T. Moutin, S. Duhamel, P. Rimmelin, F. Van Wambeke, Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean. Biogeosci. 2008, 5, 133.
| Phospholipid synthesis rates in the eastern subtropical South Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2iurnF&md5=1a55337494f85246debf6d846a7a8be8CAS |
[100] B. A. S. Van Mooy, H. F. Fredricks, B. E. Pedler, S. T. Dyhrman, D. M. Karl, M. Koblizek, M. W. Lomas, T. J. Mincer, L. R. Moore, T. Moutin, M. S. Rappe, E. A. Webb, Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 2009, 458, 69.
| Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ehtbY%3D&md5=2593ab60b49747bfd17a873567120dc6CAS |
[101] L. L. Clark, E. D. Ingall, R. Benner, Marine organic phosphorus cycling: novel insights from nuclear magnetic resonance. Am. J. Sci. 1999, 299, 724.
| Marine organic phosphorus cycling: novel insights from nuclear magnetic resonance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXls1OhsA%3D%3D&md5=7fe6ad3400d3481a7eb9ccf9aa796351CAS |
[102] B. Nowack, Environmental chemistry of phosphonates. Water Res. 2003, 37, 2533.
| Environmental chemistry of phosphonates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFOksrk%3D&md5=c98867f8967a4b3e906f3b3749c5e676CAS | 12753831PubMed |
[103] R. H. Coupe, S. J. Kalkhoff, P. D. Capel, C. Gregoire, Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag. Sci. 2012, 68, 16.
| Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1CnsrnI&md5=0466e54fbc410cff610c2d9fe2b0dcc8CAS | 21681915PubMed |
[104] M. A. Nanny, R. A. Minear, Characterization of soluble unreactive phosphorus using 31P nuclear magnetic resonance spectroscopy. Mar. Geol. 1997, 139, 77.
| Characterization of soluble unreactive phosphorus using 31P nuclear magnetic resonance spectroscopy.Crossref | GoogleScholarGoogle Scholar |
[105] E. D. Ingall, P. A. Schroeder, R. A. Berner, The nature of organic phosphorus in marine sediments – new insights from 31P. Geochim. Cosmochim. Acta 1990, 54, 2617.
| The nature of organic phosphorus in marine sediments – new insights from 31P.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlOhtbs%3D&md5=b676e19d022da2a360e740bbda22590bCAS |
[106] E. Börjesson, L. Torstensson, New methods for determination of glyphosate and (aminomethyl)phosphonic acid in water and soil. J. Chromatogr. A 2000, 886, 207.
| New methods for determination of glyphosate and (aminomethyl)phosphonic acid in water and soil.Crossref | GoogleScholarGoogle Scholar | 10950288PubMed |
[107] C. Y. Hao, D. Morse, F. Morra, X. M. Zhao, P. Yang, B. Nunn, Direct aqueous determination of glyphosate and related compounds by liquid chromatography/tandem mass spectrometry using reversed-phase and weak anion-exchange mixed-mode column. J. Chromatogr. A 2011, 1218, 5638.
| Direct aqueous determination of glyphosate and related compounds by liquid chromatography/tandem mass spectrometry using reversed-phase and weak anion-exchange mixed-mode column.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXps1ylsL8%3D&md5=248576c6423f2025ac72ccbdcb58ea89CAS |
[108] C. L. Young, E. D. Ingall, Marine dissolved organic phosphorus composition: insights from samples recovered using combined electrodialysis/reverse osmosis. Aquat. Geochem. 2010, 16, 563.
| Marine dissolved organic phosphorus composition: insights from samples recovered using combined electrodialysis/reverse osmosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVOrsLg%3D&md5=e2f4cebec8c2d2cb43e3264d77f66078CAS |
[109] L. C. Kolowith, E. D. Ingall, R. Benner, Composition and cycling of marine organic phosphorus. Limnol. Oceanogr. 2001, 46, 309.
| Composition and cycling of marine organic phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVWgsLk%3D&md5=334970568180a8d901ea4eb2c59c4765CAS |
[110] C. R. Benitez-Nelson, L. O'Neill, L. C. Kolowith, P. Pellechia, R. Thunell, Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin. Limnol. Oceanogr. 2004, 49, 1593.
| Phosphonates and particulate organic phosphorus cycling in an anoxic marine basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVWqsLo%3D&md5=7dc86d8978311528fea83e2247c84b5dCAS |
[111] A. Paytan, B. J. Cade-Menun, K. McLaughlin, K. L. Faul, Selective phosphorus regeneration of sinking marine particles: evidence from 31P-NMR. Mar. Chem. 2003, 82, 55.
| Selective phosphorus regeneration of sinking marine particles: evidence from 31P-NMR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktF2rs7k%3D&md5=f0d2b365c4a58b254174f9fa7a5ad5f8CAS | 1:CAS:528:DC%2BD3sXktF2rs7k%3D&md5=f0d2b365c4a58b254174f9fa7a5ad5f8CAS |
[112] P. Sannigrahi, E. Ingall, Polyphosphates as a source of enhanced P fluxes in marine sediments overlain by anoxic waters: evidence from 31P NMR. Geochem. Trans. 2005, 6, 52.
| Polyphosphates as a source of enhanced P fluxes in marine sediments overlain by anoxic waters: evidence from 31P NMR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCjs7nL&md5=5dd2a2860a4e0ca2ead69284199a63a8CAS | 1:CAS:528:DC%2BD28XhtVCjs7nL&md5=5dd2a2860a4e0ca2ead69284199a63a8CAS |
[113] L. M. Dong, Z. F. Yang, X. H. Liu, G. N. Liu, Investigation into organic phosphorus species in sediments of Baiyangdian Lake in China measured by fractionation and 31P NMR. Environ. Monit. Assess. 2012, 184, 5829.
| Investigation into organic phosphorus species in sediments of Baiyangdian Lake in China measured by fractionation and 31P NMR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOntbnN&md5=11248b686e2704597dc3a97d8c85c185CAS | 1:CAS:528:DC%2BC38XhtFOntbnN&md5=11248b686e2704597dc3a97d8c85c185CAS |
[114] J. Y. Liu, H. Wang, H. J. Yang, Y. J. Ma, O. C. Cai, Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environ. Pollut. 2009, 157, 49.
| Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGgsbjP&md5=18d2f72dce9255bc127533f7c01d4460CAS | 1:CAS:528:DC%2BD1cXhsVGgsbjP&md5=18d2f72dce9255bc127533f7c01d4460CAS |
[115] R. Y. Zhang, L. Y. Wang, F. C. Wu, B. A. Song, Phosphorus speciation in the sediment profile of Lake Erhai, southwestern China: fractionation and 31P NMR. J. Environ. Sci. (China) 2013, 25, 1124.
| Phosphorus speciation in the sediment profile of Lake Erhai, southwestern China: fractionation and 31P NMR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ShtbbN&md5=aefa68c7de1cf299bccce04e695d3979CAS | 1:CAS:528:DC%2BC3sXhs1ShtbbN&md5=aefa68c7de1cf299bccce04e695d3979CAS |
[116] X. L. Bai, S. M. Ding, C. X. Fan, T. Liu, D. Shi, L. Zhang, Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China. Environ. Pollut. 2009, 157, 2507.
| Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVGhtLc%3D&md5=8ca649b1390dfc81a11cbdea4f4a2bb0CAS | 1:CAS:528:DC%2BD1MXntVGhtLc%3D&md5=8ca649b1390dfc81a11cbdea4f4a2bb0CAS |
[117] A. W. Cheesman, B. L. Turner, K. R. Reddy, Soil phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland. Soil Sci. Soc. Am. J. 2012, 76, 1496.
| Soil phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFarsbnN&md5=f48b2c03e5190e4fca9c3dedf2c513e9CAS | 1:CAS:528:DC%2BC38XhtFarsbnN&md5=f48b2c03e5190e4fca9c3dedf2c513e9CAS |
[118] I. N. Ilikchyan, R. M. L. McKay, J. P. Zehr, S. T. Dyhrman, G. S. Bullerjahn, Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria. Environ. Microbiol. 2009, 11, 1314.
| Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVequrc%3D&md5=daf37d7d0e9b818e611ed863c62ba8daCAS | 1:CAS:528:DC%2BD1MXmsVequrc%3D&md5=daf37d7d0e9b818e611ed863c62ba8daCAS | 19220397PubMed |
[119] S. T. Dyhrman, P. D. Chappell, S. T. Haley, J. W. Moffett, E. D. Orchard, J. B. Waterbury, E. A. Webb, Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 2006, 439, 68.
| Phosphonate utilization by the globally important marine diazotroph Trichodesmium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1aktw%3D%3D&md5=a8641afb0eaf642b3df2ff599f4c7c5fCAS | 1:CAS:528:DC%2BD28Xht1aktw%3D%3D&md5=a8641afb0eaf642b3df2ff599f4c7c5fCAS | 16397497PubMed |
[120] H. W. Luo, H. M. Zhang, R. A. Long, R. Benner, Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 2011, 62, 61.
| Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre.Crossref | GoogleScholarGoogle Scholar |
[121] J. A. Gilbert, S. Thomas, N. A. Cooley, A. Kulakova, D. Field, T. Booth, J. W. McGrath, J. P. Quinn, I. Joint, Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. Environ. Microbiol. 2009, 11, 111.
| Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1eqtbk%3D&md5=c5ea1a50675c8fe2495f282dc9e77cf1CAS | 1:CAS:528:DC%2BD1MXjt1eqtbk%3D&md5=c5ea1a50675c8fe2495f282dc9e77cf1CAS | 18783384PubMed |
[122] Y. Chen, F. Wu, Y. Lin, N. Deng, N. Bazhin, E. Glebov, Photodegradation of glyphosate in the ferrioxalate system. J. Hazard. Mater. 2007, 148, 360.
| Photodegradation of glyphosate in the ferrioxalate system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSmsLg%3D&md5=95ed1d3ab331115f23048a6c17def1a9CAS | 1:CAS:528:DC%2BD2sXovFSmsLg%3D&md5=95ed1d3ab331115f23048a6c17def1a9CAS | 17374441PubMed |
[123] D. M. Karl, L. Beversdorf, K. M. Bjorkman, M. J. Church, A. Martinez, E. F. DeLong, Aerobic production of methane in the sea. Nat. Geosci. 2008, 1, 473.
| Aerobic production of methane in the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFCgsLc%3D&md5=4a5c9692a11f514531975f680874cea7CAS | 1:CAS:528:DC%2BD1cXnvFCgsLc%3D&md5=4a5c9692a11f514531975f680874cea7CAS |
[124] S. S. Kamat, H. J. Williams, L. J. Dangott, M. Chakrabarti, F. M. Raushel, The catalytic mechanism for aerobic formation of methane by bacteria. Nature 2013, 497, 132.
| The catalytic mechanism for aerobic formation of methane by bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Wgt7Y%3D&md5=f930f17a84622d8f01e3716b1033242fCAS | 1:CAS:528:DC%2BC3sXms1Wgt7Y%3D&md5=f930f17a84622d8f01e3716b1033242fCAS | 23615610PubMed |
[125] J. Lehmann, D. Solomon, J. A. Brandes, H. Fleckenstein, C. Jacobsen, J. Theieme, Synchrotron-based near-edge X-ray spectroscopy of NOM in soils and sediments, in Biophysico-Chemical Processes Involving Natural Non-Living Organic Matter in Environmental Systems (Eds N. Sensei, B. Xing, P. M. Huang) 2009, pp. 723–773 (Wiley: Hoboken, NJ).
[126] M. Heerboth, Speciation of Organic Phosphorus in Soils and Surface Waters by Liquid Chromatography with High Resolution Mass Spectrometry Detection 2007, Ph.D Thesis, Florida State University, Tallahassee.
[127] R. Maranger, D. F. Bird, Viral abundance in aquatic ecosystems – a comparison between marine and fresh waters. Mar. Ecol. Prog. Ser. 1995, 121, 217.
| Viral abundance in aquatic ecosystems – a comparison between marine and fresh waters.Crossref | GoogleScholarGoogle Scholar |
[128] S. W. Wilhelm, A. R. Matteson, Freshwater and marine virioplankton: a brief overview of commonalities and differences. Freshwater Biol. 2008, 53, 1076.
| Freshwater and marine virioplankton: a brief overview of commonalities and differences.Crossref | GoogleScholarGoogle Scholar |
[129] D. Lymer, E. S. Lindstrom, K. Vrede, Variable importance of viral-induced bacterial mortality along gradients of trophic status and humic content in lakes. Freshwater Biol. 2008, 53, 1101.
| Variable importance of viral-induced bacterial mortality along gradients of trophic status and humic content in lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVOhsrs%3D&md5=59fe9e56b75e167d249f4dbced900c06CAS | 1:CAS:528:DC%2BD1cXnvVOhsrs%3D&md5=59fe9e56b75e167d249f4dbced900c06CAS |
[130] D. Lymer, J. B. Logue, C. P. D. Brussaard, A. C. Baudoux, K. Vrede, E. S. Lindstrom, Temporal variation in freshwater viral and bacterial community composition. Freshwater Biol. 2008, 53, 1163.
| Temporal variation in freshwater viral and bacterial community composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVOhsrY%3D&md5=e898158362116741e923cdefc666b592CAS | 1:CAS:528:DC%2BD1cXnvVOhsrY%3D&md5=e898158362116741e923cdefc666b592CAS |
[131] D. Lymer, K. Vrede, Nutrient additions resulting in phage release and formation of non-nucleoid-containing bacteria. Aquat. Microb. Ecol. 2006, 43, 107.
| Nutrient additions resulting in phage release and formation of non-nucleoid-containing bacteria.Crossref | GoogleScholarGoogle Scholar |
[132] R. Olsson, R. Giesler, J. S. Loring, P. Persson, Adsorption, desorption, and surface-promoted hydrolysis of glucose-1-phosphate in aqueous goethite (α-FeOOH) suspensions. Langmuir 2010, 26, 18760.
| Adsorption, desorption, and surface-promoted hydrolysis of glucose-1-phosphate in aqueous goethite (α-FeOOH) suspensions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGktr3E&md5=65363d47661da27516d9b4c6b2082449CAS | 1:CAS:528:DC%2BC3cXhsVGktr3E&md5=65363d47661da27516d9b4c6b2082449CAS | 21087005PubMed |
[133] J. A. Howitt, D. S. Baldwin, G. N. Rees, B. T. Hart, Photodegradation, interaction with iron oxides and bioavailability of dissolved organic matter from forested floodplain sources. Mar. Freshwater Res. 2008, 59, 780.
| Photodegradation, interaction with iron oxides and bioavailability of dissolved organic matter from forested floodplain sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1WnsbvK&md5=5721bd3942c59504f24880b43c551dffCAS | 1:CAS:528:DC%2BD1cXht1WnsbvK&md5=5721bd3942c59504f24880b43c551dffCAS |
[134] Z. Yiyong, UV-sensitive P compounds: release mechanism, seasonal fluctuation and inhibitory effects on alkaline phosphatase activity in a shallow Chinese freshwater lake (Donghu Lake). Hydrobiol 1996, 335, 55.
| UV-sensitive P compounds: release mechanism, seasonal fluctuation and inhibitory effects on alkaline phosphatase activity in a shallow Chinese freshwater lake (Donghu Lake).Crossref | GoogleScholarGoogle Scholar |
[135] D. S. Baldwin, G. N. Rees, A. M. Mitchell, G. Watson, J. Williams, The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 2006, 26, 455.
| The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland.Crossref | GoogleScholarGoogle Scholar |
[136] G. Englund, S. D. Cooper, Scale effects and extrapolation in ecological experiments. Adv. Ecol. Res 2003, 33, 161.
| Scale effects and extrapolation in ecological experiments.Crossref | GoogleScholarGoogle Scholar |
[137] D. S. Baldwin, Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir. Limnol. Oceanogr. 1996, 41, 1725.
| Effects of exposure to air and subsequent drying on the phosphate sorption characteristics of sediments from a eutrophic reservoir.Crossref | GoogleScholarGoogle Scholar |
[138] D. Degenhardt, D. Humphries, A. J. Cessna, P. Messing, P. H. Badiou, R. Raina, A. Farenhorst, D. J. Pennock, Dissipation of glyphosate and aminomethylphosphonic acid in water and sediment of two Canadian prairie wetlands. J. Environ. Sci. Health B 2012, 47, 631.
| Dissipation of glyphosate and aminomethylphosphonic acid in water and sediment of two Canadian prairie wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1WktLs%3D&md5=8ce2527fb39cc8cf1856b9575bda1484CAS | 1:CAS:528:DC%2BC38Xms1WktLs%3D&md5=8ce2527fb39cc8cf1856b9575bda1484CAS | 22560025PubMed |
[139] D. P. Jaisi, R. E. Blake, Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates. Geochim. Cosmochim. Acta 2010, 74, 3199.
| Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFKhtbw%3D&md5=b641ecfd8c27308b0fadb824a2d8fddaCAS |
[140] D. P. Jaisi, R. K. Kukkadapu, L. M. Stout, T. Varga, R. E. Blake, Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotope ratios in phosphate. Environ. Sci. Technol. 2011, 45, 6254.
| Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotope ratios in phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVSrs7w%3D&md5=db779a7d57647b2416f46d202d17e422CAS | 21732604PubMed |
[141] M. Vila-Costa, S. Sharma, M. A. Moran, E. O. Casamayor, Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environ. Microbiol. 2013, 15, 1190.
| Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFSisbs%3D&md5=aaef58c0d36b6525a75a742d098da0c0CAS | 23176588PubMed |
[142] M. A. Moran, Metatranscriptomics: eavesdropping on complex microbial communities. Microbe 2009, 4, 329.
[143] A. M. Mitchell, D. S. Baldwin, G. N. Rees, Alterations to potential phosphorus release processes from anaerobic freshwater sediments with additions of different species of labile carbon, in Phosphates in Sediments (Eds L. Serrano, H. L. Golterman) 2005, pp. 43–54 (Backhuys Publishers: Leiden, the Netherlands).
[144] J. A. Brandes, E. Ingall, D. Paterson, Characterization of minerals and organic phosphorus species in marine sediments using soft X-ray fluorescence spectromicroscopy. Mar. Chem. 2007, 103, 250.
| Characterization of minerals and organic phosphorus species in marine sediments using soft X-ray fluorescence spectromicroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslentA%3D%3D&md5=892b1663885d642916c05ab8da5c9a8cCAS |
[145] Z. He, C. W. Honeycutt, T. Ohno, J. F. Hunt, B. J. Cade-Menun, Phosphorus features in FT-IR spectra of natural organic matter. Chin. J. Geochem 2006, 25, 259.
| Phosphorus features in FT-IR spectra of natural organic matter.Crossref | GoogleScholarGoogle Scholar |