Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Scanned stripping chronopotentiometry at bismuth film rotating disc electrodes: a method for quantitative dynamic metal speciation

Jose Paulo Pinheiro A E , Luciana S. Rocha B , Danielle Goveia C and Raewyn M. Town D
+ Author Affiliations
- Author Affiliations

A Intituto de Biotecnologia e Bioengenharia (IBB)–Centro de Biomedicina Molecular e Estrutural (CBME), Departamento de Química e Farmácia(DQF)–Faculdade de Ciências e Tecnologia (FCT), University of Algarve, Campus de Gambelas, PT-8005-139, Faro, Portugal.

B Department of Chemistry–Centro de Estudos do Ambiente e do Mar (CESAM), University of Aveiro, PT-3810-193 Aveiro, Portugal.

C Departmento de Engenharia Ambiental – Universidade Estadual de São Paulo ‘Júlio de Mesquita Filho’ (UNESP), Sorocaba-SP, Brazil.

D Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.

E Corresponding author. Email: jpinhei@ualg.pt

Environmental Chemistry 11(2) 150-157 https://doi.org/10.1071/EN13147
Submitted: 1 August 2013  Accepted: 23 October 2013   Published: 31 March 2014

Environmental context. Electroanalytical methods have found wide application in trace metal speciation analysis in environmental systems. The need to find functional alternatives to mercury electrodes for in situ speciation studies has encouraged the use of bismuth as a solid-state electrode substrate. We demonstrate the utility of bismuth electrodes for quantitative dynamic speciation analysis.

Abstract. Bismuth film electrodes are employed for dynamic metal speciation analysis of PbII complexes by stripping chronopotentiometry at scanned deposition potential (SSCP). Their performance is found to be comparable to that of mercury-film electrodes. The quantitative SSCP expressions that describe the thermodynamic and kinetic complexation parameters are straightforwardly applicable to this solid electrode.

Additional keywords: Bi film electrode, citric acid, dynamic metal speciation, iminodiacetic acid, lability, thin Hg film electrode.


References

[1]  J. Buffle, M.-L. Tercier-Waeber, Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements. Trends Analyt. Chem. 2005, 24, 172.
Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements.Crossref | GoogleScholarGoogle Scholar |

[2]  S. Capelo, A. M. Mota, M. L. S. Gonçalves, Complexation of lead with humic matter by stripping voltammetry. Prevention of adsorption on Nafion-coated mercury film electrode. Electroanal. 1995, 7, 563.
Complexation of lead with humic matter by stripping voltammetry. Prevention of adsorption on Nafion-coated mercury film electrode.Crossref | GoogleScholarGoogle Scholar |

[3]  R. M. Town, H. P. van Leeuwen, Effects of adsorption in stripping chronopotentiometric metal speciation analysis. J. Electroanal. Chem. 2002, 523, 1.
Effects of adsorption in stripping chronopotentiometric metal speciation analysis.Crossref | GoogleScholarGoogle Scholar |

[4]  R. M. Town, H. P. van Leeuwen, Fundamental features of metal ion determination by stripping chronopotentiometry. J. Electroanal. Chem. 2001, 509, 58.
Fundamental features of metal ion determination by stripping chronopotentiometry.Crossref | GoogleScholarGoogle Scholar |

[5]  H. P. van Leeuwen, R. M. Town, Elementary features of depletive stripping chronopotentiometry. J. Electroanal. Chem. 2002, 535, 1.
Elementary features of depletive stripping chronopotentiometry.Crossref | GoogleScholarGoogle Scholar |

[6]  D. D. DeFord, D. N. Hume, The determination of consecutive formation constants of complex ions from polarographic data. J. Am. Chem. Soc. 1951, 73, 5321.
The determination of consecutive formation constants of complex ions from polarographic data.Crossref | GoogleScholarGoogle Scholar |

[7]  H. P. van Leeuwen, R. M. Town, Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential. Environ. Sci. Technol. 2003, 37, 3945.
Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential.Crossref | GoogleScholarGoogle Scholar | 12967117PubMed |

[8]  R. M. Town, H. P. van Leeuwen, Depletive stripping chronopotentiometry: a major step forward in electrochemical stripping techniques for metal ion speciation analysis. Electroanal. 2004, 16, 458.
Depletive stripping chronopotentiometry: a major step forward in electrochemical stripping techniques for metal ion speciation analysis.Crossref | GoogleScholarGoogle Scholar |

[9]  R. M. Town, H. P. van Leeuwen, Comparative evaluation of scanned stripping techniques: SSCP v. SSV. Croat. Chem. Acta 2006, 79, 15.

[10]  J. Wang, J. Lu, S. B. Hocevar, P. A. M. Farias, Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem. 2000, 72, 3218.
Bismuth-coated carbon electrodes for anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 10939390PubMed |

[11]  R. Pauliukaitė, S. B. Hočevar, B. Ogorevc, J. Wang, Characterization and applications of a bismuth bulk electrode. Electroanal. 2004, 16, 719.
Characterization and applications of a bismuth bulk electrode.Crossref | GoogleScholarGoogle Scholar |

[12]  Z. Bi, C. S. Chapman, P. Salaün, C. M. G. van den Berg, Determination of lead and cadmium in sea- and freshwater by anodic stripping voltammetry with a vibrating bismuth electrode. Electroanal. 2010, 22, 2897.
Determination of lead and cadmium in sea- and freshwater by anodic stripping voltammetry with a vibrating bismuth electrode.Crossref | GoogleScholarGoogle Scholar |

[13]  M. de la Gala Morales, M. R. P. Marín, L. C. Blázquez, E. P. Gil, Performance of a bismuth bulk rotating disk electrode for heavy metal analysis: determination of lead in environmental samples. Electroanal. 2012, 24, 1170.
Performance of a bismuth bulk rotating disk electrode for heavy metal analysis: determination of lead in environmental samples.Crossref | GoogleScholarGoogle Scholar |

[14]  G.-H. Hwang, W.-K. Han, J.-S. Park, S.-G. Kang, An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium. Sens. Actuat. B. 2008, 135, 309.
An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium.Crossref | GoogleScholarGoogle Scholar |

[15]  C. Kokkinos, A. Economou, I. Raptis, T. Speliotis, Disposable lithographically fabricated bismuth microelectrode arrays for stripping voltammetric detection of trace metals. Electrochem. Commun. 2011, 13, 391.
Disposable lithographically fabricated bismuth microelectrode arrays for stripping voltammetric detection of trace metals.Crossref | GoogleScholarGoogle Scholar |

[16]  V. Mirceski, S. B. Hocevar, B. Ogorevc, R. Gulaboski, I. Drangov, Diagnostics of anodic stripping mechanisms under square-wave voltammetry conditions using bismuth film substrates. Anal. Chem. 2012, 84, 4429.
Diagnostics of anodic stripping mechanisms under square-wave voltammetry conditions using bismuth film substrates.Crossref | GoogleScholarGoogle Scholar | 22462643PubMed |

[17]  R. Pauliukaitė, C. M. A. Brett, Characterization and application of bismuth-film modified carbon film electrodes. Electroanal. 2005, 17, 1354.
Characterization and application of bismuth-film modified carbon film electrodes.Crossref | GoogleScholarGoogle Scholar |

[18]  N. Serrano, J. M. Díaz-Cruz, C. Ariño, M. Esteban, Ex situ deposited bismuth film on screen-printed carbon electrode: a disposable device for stripping voltammetry of heavy metal ions. Electroanal. 2010, 22, 1460.
Ex situ deposited bismuth film on screen-printed carbon electrode: a disposable device for stripping voltammetry of heavy metal ions.Crossref | GoogleScholarGoogle Scholar |

[19]  L. S. Rocha, E. Pereira, A. C. Duarte, J. P. Pinheiro, Performance of ex situ bismuth film rotating disk electrode in trace metal analysis by stripping chronopotentiometry: definition of the depletion regime and optimization of experimental parameters. Electroanalysis 2011, 23, 1891.
Performance of ex situ bismuth film rotating disk electrode in trace metal analysis by stripping chronopotentiometry: definition of the depletion regime and optimization of experimental parameters.Crossref | GoogleScholarGoogle Scholar |

[20]  A. Bobrowski, A. Królicka, J. Zarębski, Morphology and electrochemical properties of the bismuth film electrode ex situ electrochemically plated from perchloric acid. Electroanal. 2010, 22, 1421.
Morphology and electrochemical properties of the bismuth film electrode ex situ electrochemically plated from perchloric acid.Crossref | GoogleScholarGoogle Scholar |

[21]  N. Serrano, J. M. Díaz-Cruz, C. Ariño, M. Esteban, Stripping analysis of heavy metals in tap water using the bismuth film electrode. Anal. Bioanal. Chem. 2010, 396, 1365.
Stripping analysis of heavy metals in tap water using the bismuth film electrode.Crossref | GoogleScholarGoogle Scholar | 19937002PubMed |

[22]  N. Serrano, N. Martín, J. M. Díaz-Cruz, C. Ariño, M. Esteban, Bismuth film electrode in metal complexation studies: stripping analysis of the PbII-, CdII-, and ZnII-binding with phthalate. Electroanalysis 2009, 21, 431.
Bismuth film electrode in metal complexation studies: stripping analysis of the PbII-, CdII-, and ZnII-binding with phthalate.Crossref | GoogleScholarGoogle Scholar |

[23]  R. O. Kadara, I. E. Tothill, Stripping chronopotentiometric measurements of lead(II) and cadmium(II) in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly. Anal. Bioanal. Chem. 2004, 378, 770.
Stripping chronopotentiometric measurements of lead(II) and cadmium(II) in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly.Crossref | GoogleScholarGoogle Scholar | 14658027PubMed |

[24]  Z. Rengel, Genetic control of root exudation. Plant Soil 2002, 245, 59.
Genetic control of root exudation.Crossref | GoogleScholarGoogle Scholar |

[25]  G. Anderegg, F. Arnaud-Neu, R. Delgado, J. Felcman, K. Popov, Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications. Pure Appl. Chem. 2005, 77, 1445.
Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications.Crossref | GoogleScholarGoogle Scholar |

[26]  V. G. Levich, Physicochemical Hydrodynamics 1962 (Prentice Hall: Englewood Cliffs, NJ).

[27]  H. P. van Leeuwen, R. M. Town, Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 1. Fundamental features. J. Electroanal. Chem. 2002, 536, 129.
Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 1. Fundamental features.Crossref | GoogleScholarGoogle Scholar |

[28]  J. Heyrovský, J. Kuta, Principles of Polarography 1966 (Academic Press: New York).

[29]  J. Koutecký, J. Koryta, The general theory of polarographic kinetic currents. Electrochim. Acta 1961, 3, 318.
The general theory of polarographic kinetic currents.Crossref | GoogleScholarGoogle Scholar |

[30]  H. P. van Leeuwen, R. M. Town, Town, Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 4. The kinetic current regime. J. Electroanal. Chem. 2004, 561, 67.
Town, Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 4. The kinetic current regime.Crossref | GoogleScholarGoogle Scholar |

[31]  R. M. Town, L. P. Yezek, H. P. van Leeuwen, Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 8. Metal speciation analysis in gels. J. Electroanal. Chem. 2006, 589, 203.
Stripping chronopotentiometry at scanned deposition potential (SSCP). Part 8. Metal speciation analysis in gels.Crossref | GoogleScholarGoogle Scholar |

[32]  J. P. Pinheiro, H. P. van Leeuwen, Scanned stripping chronopotentiometry of metal complexes: lability diagnosis and stability computation. J. Electroanal. Chem. 2004, 570, 69.
Scanned stripping chronopotentiometry of metal complexes: lability diagnosis and stability computation.Crossref | GoogleScholarGoogle Scholar |

[33]  S. C. C. Monterroso, H. M. Carapuça, J. E. J. Simão, A. C. Duarte, Optimisation of mercury film deposition on glassy carbon electrodes: evaluation of the combined effects of pH, thiocyanate ion and deposition potential. Anal. Chim. Acta 2004, 503, 203.
Optimisation of mercury film deposition on glassy carbon electrodes: evaluation of the combined effects of pH, thiocyanate ion and deposition potential.Crossref | GoogleScholarGoogle Scholar |

[34]  H. P. Wu, Nature and stability of mercury thin films on glassy carbon electrodes under fast-scan anodic stripping voltammetry. Anal. Chem. 1994, 66, 3151.
Nature and stability of mercury thin films on glassy carbon electrodes under fast-scan anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar |

[35]  A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions 1985 (Marcel Dekker: New York).

[36]  V. K. Henry (Ed.), CRC Handbook of Thermophysical and Thermochemical Data 1994 (CRC press Inc.: Boca Raton, FL).

[37]  G. Herzog, D. W. M. Arrigan, Determination of trace metals by underpotential deposition-stripping voltammetry at solid electrodes. Trends Analyt. Chem. 2005, 24, 208.
Determination of trace metals by underpotential deposition-stripping voltammetry at solid electrodes.Crossref | GoogleScholarGoogle Scholar |

[38]  C.-H. Lien, C.-C. Hu, K.-H. Chang, Y.-D. Tsai, D. S.-H. Wang, A study on the key factors affecting the sensibility of bismuth deposits toward Sn2+: effects of bismuth microstructures on the Sn2+ pre-deposition. Electrochim. Acta 2013, 105, 665.
A study on the key factors affecting the sensibility of bismuth deposits toward Sn2+: effects of bismuth microstructures on the Sn2+ pre-deposition.Crossref | GoogleScholarGoogle Scholar |

[39]  A. V. Tarelkin, V. L. Kravtsov, V. I. Kondrat'ev, Kinetics and mechanism of electroreduction of lead(II) nitrilotriacetic acid complexes. Vestnik Leningradskogo Universiteta, Seriya 4 – Fizika. Khimiya 1989, 3, 112.

[40]  L. S. Rocha, E. Companys, J. Galceran, H. M. Carapuça, J. P. Pinheiro, Evaluation of thin mercury film rotating disk electrode to perform absence of gradients and Nernstian equilibrium stripping (AGNES) measurements. Talanta 2010, 80, 1881.
Evaluation of thin mercury film rotating disk electrode to perform absence of gradients and Nernstian equilibrium stripping (AGNES) measurements.Crossref | GoogleScholarGoogle Scholar | 20152427PubMed |

[41]  H. P. van Leeuwen, R. M. Town, J. Buffle, Impact of ligand protonation on Eigen-type metal complexation kinetics in aqueous systems. J. Phys. Chem. A 2007, 111, 2115.
Impact of ligand protonation on Eigen-type metal complexation kinetics in aqueous systems.Crossref | GoogleScholarGoogle Scholar | 17388287PubMed |

[42]  V. I. Slaveykova, N. Parthasarathy, J. Buffle, K. J. Wilkinson, Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters. Sci. Total Environ. 2004, 328, 55.
Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters.Crossref | GoogleScholarGoogle Scholar | 15207573PubMed |

[43]  G. Anderegg, Komplexone XXXVI. Reaktionsenthalpie und –entropie bei der Bildung der Metallkomplexe der höheren EDTA-Homologen. Helv. Chim. Acta 1964, 47, 1801.
Komplexone XXXVI. Reaktionsenthalpie und –entropie bei der Bildung der Metallkomplexe der höheren EDTA-Homologen.Crossref | GoogleScholarGoogle Scholar |

[44]  J. P. Gustavsson, MINTEQ Visual, ver. 3.0 2012 (KTH, Department of Land and Water Resources Engineering: Stockholm, Sweden).