Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Biomarker assessment of spatial and temporal changes in the composition of flocculent material (floc) in the subtropical wetland of the Florida Coastal Everglades

Oliva Pisani A C , J. William Louda B and Rudolf Jaffé A D
+ Author Affiliations
- Author Affiliations

A Southeast Environmental Research Center and Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA.

B Department of Chemistry & Biochemistry and The Environmental Sciences Program, Florida Atlantic University, Boca Raton, FL 33431, USA.

C Present address: Department of Physical & Environmental Sciences, University of Toronto at Scarborough, Toronto, ON, M1C 1A4, Canada.

D Corresponding author. Email: jaffer@fiu.edu

Environmental Chemistry 10(5) 424-436 https://doi.org/10.1071/EN13062
Submitted: 21 March 2013  Accepted: 17 June 2013   Published: 20 August 2013

Environmental context. Flocculent material (floc) in freshwater and coastal areas of the Florida Everglades plays an important role in food web dynamics and nutrient cycling. Using biomarkers and pigment chemotaxonomy, we determined the organic matter composition of floc from different environments in the Everglades, and found that it is dominated by local biomass inputs and influenced by hydrological regimes. With the on-going restoration of the Florida Everglades, it is important to gain a better understanding of the biogeochemical dynamics of floc, including its sources, transformations and reactivity.

Abstract. Flocculent material (floc) is an important energy source in wetlands. In the Florida Everglades, floc is present in both freshwater marshes and coastal environments and plays a key role in food webs and nutrient cycling. However, not much is known about its environmental dynamics, in particular its biological sources and bio-reactivity. We analysed floc samples collected from different environments in the Florida Everglades and applied biomarkers and pigment chemotaxonomy to identify spatial and seasonal differences in organic matter sources. An attempt was made to link floc composition with algal and plant productivity. Spatial differences were observed between freshwater marsh and estuarine floc. Freshwater floc receives organic matter inputs from local periphyton mats, as indicated by microbial biomarkers and chlorophyll-a estimates. At the estuarine sites, the floc is dominated by mangrove as well as diatom inputs from the marine end-member. The hydroperiod (duration and depth of inundation) at the freshwater sites influences floc organic matter preservation, where the floc at the short-hydroperiod site is more oxidised likely due to periodic dry-down conditions. Seasonal differences in floc composition were not consistent and the few that were observed are likely linked to the primary productivity of the dominant biomass (periphyton in the freshwater marshes and mangroves in the estuarine zone). Molecular evidence for hydrological transport of floc material from the freshwater marshes to the coastal fringe was also observed. With the on-going restoration of the Florida Everglades, it is important to gain a better understanding of the biogeochemical dynamics of floc, including its sources, transformations and reactivity.

Additional keywords: estuarine, freshwater marsh, hydroperiod, mangrove, periphyton, pigment.


References

[1]  I. G. Droppo, Rethinking what constitutes suspended sediment. Hydrol. Processes 2001, 15, 1551.
Rethinking what constitutes suspended sediment.Crossref | GoogleScholarGoogle Scholar |

[2]  J. C. Moore, E. L. Berlow, D. C. Coleman, P. C. De Suiter, Q. Dong, A. Hastings, N. C. Johnson, K. S. McCann, K. Melville, P. J. Morin, K. Nadelhoffer, A. D. Rosemond, D. M. Post, J. L. Sabo, K. M. Scow, M. J. Vanni, D. H. Wall, Detritus, trophic dynamics and biodiversity. Ecol. Lett. 2004, 7, 584.
Detritus, trophic dynamics and biodiversity.Crossref | GoogleScholarGoogle Scholar |

[3]  E. D. Ongley, B. G. Krishnappan, I. G. Droppo, S. S. Rao, R. J. Maguire, Cohesive sediment transport: emerging issues for toxic chemical management. Hydrobiologia 1992, 235–236, 177.
Cohesive sediment transport: emerging issues for toxic chemical management.Crossref | GoogleScholarGoogle Scholar |

[4]  M. Simon, H. Grossart, B. Schweitzer, H. Ploug, Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 2002, 28, 175.
Microbial ecology of organic aggregates in aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar |

[5]  L. L. Belicka, E. R. Sokol, J. M. Hoch, R. Jaffé, J. C. Trexler, A molecular and stable isotopic approach to investigate algal and detrital energy pathways in a freshwater marsh. Wetlands 2012, 32, 531.
A molecular and stable isotopic approach to investigate algal and detrital energy pathways in a freshwater marsh.Crossref | GoogleScholarGoogle Scholar |

[6]  J. R. White, K. R. Reddy, Influence of phosphorus loading on organic nitrogen mineralization of Everglades soils. Soil Sci. Soc. Am. J. 2000, 64, 1525.
Influence of phosphorus loading on organic nitrogen mineralization of Everglades soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsF2hs78%3D&md5=4822998ac9cf47e34c3ca14032722451CAS |

[7]  R. R. Neto, R. N. Mead, J. W. Louda, R. Jaffé, Organic biogeochemistry of detrital flocculent material (floc) in a subtropical, coastal wetland. Biogeochemistry 2006, 77, 283.
Organic biogeochemistry of detrital flocculent material (floc) in a subtropical, coastal wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVejsrs%3D&md5=aa26a61acc3158d8cab4c2b47f55ca60CAS |

[8]  A. J. Williams, J. C. Trexler, A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern Everglades. Hydrobiologia 2006, 569, 493.
A preliminary analysis of the correlation of food-web characteristics with hydrology and nutrient gradients in the southern Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyju78%3D&md5=8c1b62d5f4931df566d2f8ad5b716c02CAS |

[9]  O. Pisani, Y. Yamashita, R. Jaffé, Photo-dissolution of flocculent, detrital material in aquatic environments: contributions to the dissolved organic matter pool. Water Res. 2011, 45, 3836.
Photo-dissolution of flocculent, detrital material in aquatic environments: contributions to the dissolved organic matter pool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFOrtr0%3D&md5=29793b2d198c8196c5e67274c66fdb52CAS | 21570101PubMed |

[10]  L. G. Larsen, J. W. Harvey, J. P. Crimaldi, Morphologic and transport properties of natural organic floc. Water Resour. Res. 2009, 45, W01410.
Morphologic and transport properties of natural organic floc.Crossref | GoogleScholarGoogle Scholar |

[11]  L. G. Larsen, J. W. Harvey, G. B. Noe, J. P. Crimaldi, Predicting organic floc transport dynamics in shallow aquatic ecosystems: insights from the field, the laboratory, and numerical modeling. Water Resour. Res. 2009, 45, W01411.
Predicting organic floc transport dynamics in shallow aquatic ecosystems: insights from the field, the laboratory, and numerical modeling.Crossref | GoogleScholarGoogle Scholar |

[12]  D. T. Rudnick, Z. Chen, D. L. Childers, J. N. Boyer, T. D. Fontaine, Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershed. Estuaries 1999, 22, 398.
Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVOmtr4%3D&md5=fab9a56d7ccb4a6139dad94b77dde8f4CAS |

[13]  D. L. Childers, J. N. Boyer, S. E. Davis, C. J. Madden, D. T. Rudnick, F. H. Sklar, Relating precipitation and water management to nutrient concentrations in the oligotrophic ‘upside-down’ estuaries of the Florida Everglades. Limnol. Oceanogr. 2006, 51, 602.
Relating precipitation and water management to nutrient concentrations in the oligotrophic ‘upside-down’ estuaries of the Florida Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFaqurk%3D&md5=b50a5a682a461d8ef7c19aea05cb8335CAS |

[14]  L. H. Gunderson, Vegetation of the Everglades - determinants of community composition, in Everglades: The Ecosystem and its Restoration (Eds S. M. Davis, J. C. Ogden) 1994, pp. 323–340 (St Lucie Press: Boca Raton, FL).

[15]  M. J. Todd, R. Muneepeerakul, D. Pumo, S. Azaele, F. Miralles-Wilhelm, A. Rinaldo, I. Rodriguez-Iturbe, Hydrological drivers of wetland vegetation community distribution within Everglades National Park, Florida. Adv. Water Resour. 2010, 33, 1279.
Hydrological drivers of wetland vegetation community distribution within Everglades National Park, Florida.Crossref | GoogleScholarGoogle Scholar |

[16]  C. M. Loveless, A Study of the Vegetation in the Florida Everglades. Ecology 1959, 40, 1.
A Study of the Vegetation in the Florida Everglades.Crossref | GoogleScholarGoogle Scholar |

[17]  P. J. Gleason, W. Spackman, Calcareous periphyton and water chemistry in the Everglades, in Environments of South Florida: Present and Past (Ed. P. J. Gleason) 1974, pp. 146–181 (Miami Geological Society: Miami, FL).

[18]  W. F. DeBusk, S. Newman, K. R. Reddy, Wetlands and aquatic processes spatio-temporal patterns of soil phosphorus enrichment in Everglades Water Conservation Area 2A. J. Environ. Qual. 2001, 30, 1438.
Wetlands and aquatic processes spatio-temporal patterns of soil phosphorus enrichment in Everglades Water Conservation Area 2A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFWqs7k%3D&md5=335ed142363693696ef708b0e507328bCAS | 11476523PubMed |

[19]  G. B. Noe, L. J. Scinto, J. Taylor, D. L. Childers, R. D. Jones, Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshw. Biol. 2003, 48, 1993.
Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps12rs7w%3D&md5=b5d1e4c60cfe6a17f06799441b2fc494CAS |

[20]  L. Leonard, A. Croft, D. Childers, S. Mitchell-Bruker, H. Solo-Gabriele, M. Ross, Characteristics of surface-water flows in the ridge and slough landscape of Everglades National Park: implications for particulate transport. Hydrobiologia 2006, 569, 5.
Characteristics of surface-water flows in the ridge and slough landscape of Everglades National Park: implications for particulate transport.Crossref | GoogleScholarGoogle Scholar |

[21]  R. Jaffé, R. Mead, M. E. Hernandez, M. C. Peralba, O. A. DiGuida, Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Org. Geochem. 2001, 32, 507.
Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study.Crossref | GoogleScholarGoogle Scholar |

[22]  R. Jaffé, A. I. Rushdi, P. M. Medeiros, B. R. T. Simoneit, Natural product biomarkers as indicators of sources and transport of sedimentary organic matter in a subtropical river. Chemosphere 2006, 64, 1870.
Natural product biomarkers as indicators of sources and transport of sedimentary organic matter in a subtropical river.Crossref | GoogleScholarGoogle Scholar | 16530807PubMed |

[23]  T. G. Troxler, J. H. Richards, δ13C, δ15N, carbon, nitrogen and phosphorus as indicators of plant ecophysiology and organic matter pathways in Everglades deep slough, Florida, USA. Aquat. Bot. 2009, 91, 157.
δ13C, δ15N, carbon, nitrogen and phosphorus as indicators of plant ecophysiology and organic matter pathways in Everglades deep slough, Florida, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKntbbF&md5=5deb581dcc389a9bc840266ec6c33f17CAS |

[24]  M. Gao, B. R. T. Simoneit, M. Gantar, R. Jaffé, Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades. Chemosphere 2007, 70, 224.
Occurrence and distribution of novel botryococcene hydrocarbons in freshwater wetlands of the Florida Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlalurjL&md5=24dac5f30d6b3322155cd55d870b5b50CAS | 17688908PubMed |

[25]  A. D. Gottlieb, J. H. Richards, E. E. Gaiser, Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes. Hydrobiologia 2006, 569, 195.
Comparative study of periphyton community structure in long and short-hydroperiod Everglades marshes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyjuro%3D&md5=1526b6070acdc5d5a863b51578cbc92bCAS |

[26]  S. E. Davis, C. Corronado-Molina, D. L. Childers, J. W. Day, Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquat. Bot. 2003, 75, 199.
Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVagsr4%3D&md5=282f03fab2597247c758d6c70201681eCAS |

[27]  S. M. L. Ewe, E. E. Gaiser, D. L. Childers, D. Iwaniec, V. H. Rivera-Monroy, R. R. Twilley, Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 2006, 569, 459.
Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades.Crossref | GoogleScholarGoogle Scholar |

[28]  S. E. Davis, J. E. Cable, D. L. Childers, C. Coronado-Molina, J. W. Day, C. D. Hittle, C. J. Madden, E. Reyes, D. Rudnick, F. Sklar, Importance of storm events in controlling ecosystem structure and function in a Florida Gulf Coast estuary. J. Coast. Res. 2004, 20, 1198.
Importance of storm events in controlling ecosystem structure and function in a Florida Gulf Coast estuary.Crossref | GoogleScholarGoogle Scholar |

[29]  D. Harris, W. R. Horwáth, C. Van Kessel, Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 2001, 65, 1853.
Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Slsrs%3D&md5=7d1d898f716af9377cb1bdca9fdf6d9eCAS |

[30]  S. E. Hagerthey, J. William Louda, P. Mongkronsri, Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll a determination and chemotaxonomic assessment. J. Phycol. 2006, 42, 1125.
Evaluation of pigment extraction methods and a recommended protocol for periphyton chlorophyll a determination and chemotaxonomic assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOrsb%2FJ&md5=2b26a44a7006c195c1b38bede6fbeba7CAS |

[31]  S. W. Jeffrey, R. F. C. Mantoura, S. W. Wright, Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods 1997 (UNESCO: Paris).

[32]  R. F. C. Mantoura, C. A. Llewellyn, The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta 1983, 151, 297.
The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltFSnsLc%3D&md5=45851dd4e43a6e1e28262bad02f0b55fCAS |

[33]  C. S. Grant, J. W. Louda, Microalgal pigment ratios in relation to light intensity: implications for chemotaxonomy. Aquat. Biol. 2010, 11, 127.
Microalgal pigment ratios in relation to light intensity: implications for chemotaxonomy.Crossref | GoogleScholarGoogle Scholar |

[34]  J. W. Louda, HPLC-based chemotaxonomy of Florida Bay phytoplankton: difficulties in coastal environments. J. Liquid Chromatogr. Relat. Technol. 2008, 31, 295.[Published online early 20 December 2007].
HPLC-based chemotaxonomy of Florida Bay phytoplankton: difficulties in coastal environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOrt73I&md5=76f3484b34b53f08f7b8b39291fd984bCAS |

[35]  R. Corstanje, S. Grunwald, K. R. Reddy, T. Z. Osborne, S. Newman, Assessment of the spatial distribution of soil properties in a Northern Everglades marsh. J. Environ. Qual. 2006, 35, 938.
Assessment of the spatial distribution of soil properties in a Northern Everglades marsh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVCjsbk%3D&md5=8273208d6e7bfecd945776551bd4e8dbCAS | 16641332PubMed |

[36]  W. F. DeBusk, K. R. Reddy, Division S-10 – Wetland soils: turnover of detrital organic carbon in a nutrient-impacted Everglades marsh. Soil Sci. Soc. Am. J. 1998, 62, 1460.
Division S-10 – Wetland soils: turnover of detrital organic carbon in a nutrient-impacted Everglades marsh.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVOqu74%3D&md5=fb2493ef81ce6aff4cadc6f11df466eaCAS |

[37]  R. M. Chambers, K. A. Pederson, Variation in soil phosphorus, sulfur, and iron pools among south Florida wetlands. Hydrobiologia 2006, 569, 63.
Variation in soil phosphorus, sulfur, and iron pools among south Florida wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyjtbo%3D&md5=d7bd96843a1f24afaa8b1a275047c33eCAS |

[38]  K. W. Krauss, T. W. Doyle, R. R. Twilley, V. H. Rivera-Monroy, J. K. Sullivan, Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 2006, 569, 311.
Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyjurk%3D&md5=b9cbb3028567c5a83955d29a0ef7da2fCAS |

[39]  R. R. Twilley, A. E. Lugo, C. Patterson-Zucca, Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 1986, 67, 670.
Litter production and turnover in basin mangrove forests in southwest Florida.Crossref | GoogleScholarGoogle Scholar |

[40]  N. Poret, R. R. Twilley, V. H. Rivera-Monroy, C. Coronado-Molina, Belowground decomposition of mangrove roots in Florida Coastal Everglades. Estuaries Coasts 2007, 30, 491.
Belowground decomposition of mangrove roots in Florida Coastal Everglades.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1ejtb4%3D&md5=b2fc53ae00640186c20213ff274b6b28CAS |

[41]  V. H. Rivera-Monroy, R. R. Twilley, S. E. Davis, D. L. Childers, M. Simard, R. Chambers, R. Jaffé, J. N. Boyer, D. T. Rudnick, K. Zhang, E. Castañeda-Moya, S. M. L. Ewe, R. M. Price, C. Coronado-Molina, M. Ross, T. J. Smith, B. Michot, E. Meselhe, W. Nuttle, T. G. Troxler, G. B. Noe, The role of the everglades mangrove ecotone region (EMER) in regulating nutrient cycling and wetland productivity in South Florida. Crit. Rev. Environ. Sci. Technol. 2011, 41, 633.
The role of the everglades mangrove ecotone region (EMER) in regulating nutrient cycling and wetland productivity in South Florida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1aqt7Y%3D&md5=bd5fae02fd8bcef763f49dba1a6dcd4aCAS |

[42]  P. A. Meyers, R. Ishiwatari, Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 1993, 20, 867.
Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXosFynsQ%3D%3D&md5=a4bcc07d058216a74c02d2da2a0c31a4CAS |

[43]  D. F. Millie, H. W. Paerl, J. P. Hurley, Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications. Can. J. Fish. Aquat. Sci. 1993, 50, 2513.
Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktlSjurg%3D&md5=22f981f9305835b99ddaaaf5c1491b7aCAS |

[44]  S. Roy, C. A. Llewellyn, E. S. Egeland, G. Johsen, Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography 2011 (Cambridge University Press: Cambridge, UK).

[45]  M. D. Mackey, D. J. Mackey, H. W. Higgins, S. W. Wright, CHEMTAX – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 1996, 144, 265.
CHEMTAX – a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVeksbo%3D&md5=be45afcb208c6dd867e420f7f05e2882CAS |

[46]  K. Van den Meersche, K. Soetaert, J. J. Middelburg, A Bayesian compositional estimator for microbial taxonomy based on biomarkers. Limnol. Oceanogr. Methods 2008, 6, 190.
A Bayesian compositional estimator for microbial taxonomy based on biomarkers.Crossref | GoogleScholarGoogle Scholar |

[47]  J. W. Louda, J. Li, L. Liu, M. N. Winfree, E. W. Baker, Chlorophyll-a degradation during cellular senescence and death. Org. Geochem. 1998, 29, 1233.
Chlorophyll-a degradation during cellular senescence and death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsl2jtA%3D%3D&md5=84ef1b5dc8753275b945c349b4501c67CAS |

[48]  F. Garcia-Pichel, N. D. Sherry, R. W. Castenholz, Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 1992, 56, 17.
Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVOgt7w%3D&md5=965b314595086683d1114f35e2ec99b6CAS | 1508978PubMed |

[49]  P. A. Cranwell, Lipids of aquatic sediments and sedimenting particulates. Prog. Lipid Res. 1982, 21, 271.
Lipids of aquatic sediments and sedimenting particulates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktFSgu7o%3D&md5=0d77bfb675ab1686fd9a629ff1942401CAS | 6763223PubMed |

[50]  R. Jaffé, G. A. Wolff, A. Cabrera, H. Carvajal Chitty, The biogeochemistry of lipids in rivers of the Orinoco Basin. Geochim. Cosmochim. Acta 1995, 59, 4507.
The biogeochemistry of lipids in rivers of the Orinoco Basin.Crossref | GoogleScholarGoogle Scholar |

[51]  P. A. Meyers, Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 1997, 27, 213.
Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVequg%3D%3D&md5=6d9774c19316cd8595fb0e701dde9984CAS |

[52]  R. Mead, Y. Xu, J. Chong, R. Jaffé, Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org. Geochem. 2005, 36, 363.
Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFejur4%3D&md5=2851a60f5e9cb80d0d72302e2fa57e9dCAS |

[53]  K. J. Ficken, B. Li, D. L. Swain, G. Eglinton, An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 2000, 31, 745.
An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFSqu7k%3D&md5=54237a7a6f00eaec1ecd795c728c8d33CAS |

[54]  J. Albaigés, J. Grimalt, J. M. Bayona, R. Risebrough, B. de Lappe, W. Walker, Dissolved, particulate and sedimentary hydrocarbons in a deltaic environment. Org. Geochem. 1984, 6, 237.
Dissolved, particulate and sedimentary hydrocarbons in a deltaic environment.Crossref | GoogleScholarGoogle Scholar |

[55]  C. J. Saunders, M. Gao, J. A. Lynch, R. Jaffé, D. L. Childers, Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough, Everglades National Park. Hydrobiologia 2006, 569, 475.
Using soil profiles of seeds and molecular markers as proxies for sawgrass and wet prairie slough vegetation in Shark Slough, Everglades National Park.Crossref | GoogleScholarGoogle Scholar |

[56]  E. Castañeda-Moya, R. R. Twilley, V. H. Rivera-Monroy, K. Zhang, S. E. Davis, M. Ross, Sediment and nutrient deposition associated with Hurricane Wilma in mangroves of the Florida coastal everglades. Estuaries Coasts 2010, 33, 45.
Sediment and nutrient deposition associated with Hurricane Wilma in mangroves of the Florida coastal everglades.Crossref | GoogleScholarGoogle Scholar |

[57]  D. A. Willard, L. M. Weimer, W. L. Riegel, Pollen assemblages as paleoenvironmental proxies in the Florida Everglades. Rev. Palaeobot. Palynol. 2001, 113, 213.
Pollen assemblages as paleoenvironmental proxies in the Florida Everglades.Crossref | GoogleScholarGoogle Scholar | 11179714PubMed |

[58]  E. Gelpi, J. Oró, H. J. Schneider, E. O. Bennett, Olefins of high molecular weight in two microscopic algae. Science 1968, 161, 700.
Olefins of high molecular weight in two microscopic algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkslClsLs%3D&md5=eed00a5397d6a7eb077892173e5b38d5CAS | 5664510PubMed |

[59]  Y. Xu, R. Jaffé, Lipid biomarkers in suspended particles from a subtropical estuary: assessment of seasonal changes in sources and transport of organic matter. Mar. Environ. Res. 2007, 64, 666.
Lipid biomarkers in suspended particles from a subtropical estuary: assessment of seasonal changes in sources and transport of organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGktLfN&md5=15268e9bbc8e428e30990eb94f9f002bCAS | 17889327PubMed |

[60]  Y. Xu, R. Jaffé, A. Wachnicka, E. E. Gaiser, Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: paleoenvironmental indicators of diatom-derived organic matter inputs. Org. Geochem. 2006, 37, 847.
Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: paleoenvironmental indicators of diatom-derived organic matter inputs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFaksr0%3D&md5=928eb76433f0add1901daac1679fecd9CAS |

[61]  G. Massé, S. T. Belt, W. G. Allard, C. A. Lewis, S. G. Wakeham, S. J. Rowland, Occurrence of novel monocyclic alkenes from diatoms in marine particulate matter and sediments. Org. Geochem. 2004, 35, 813.
Occurrence of novel monocyclic alkenes from diatoms in marine particulate matter and sediments.Crossref | GoogleScholarGoogle Scholar |

[62]  J. W. Farrington, N. M. Frew, P. M. Gschwend, B. W. Tripp, Hydrocarbons in cores of northwestern Atlantic coastal and continental margin sediments. Estuar. Coast. Mar. Sci. 1977, 5, 793.
Hydrocarbons in cores of northwestern Atlantic coastal and continental margin sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhsFKitr8%3D&md5=606734871e716d67631e10f949d15b2fCAS |

[63]  P. D. Boehm, J. G. Quinn, Benthic hydrocarbons of Rhode Island sound. Estuar. Coast. Mar. Sci. 1978, 6, 471.
Benthic hydrocarbons of Rhode Island sound.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlsFahsbw%3D&md5=9dcd776b3c3127e3230def77dc1ce4fbCAS |

[64]  R. C. Barrick, J. I. Hedges, Hydrocarbon geochemistry of the Puget Sound region – II. Sedimentary diterpenoid, steroid and triterpenoid hydrocarbons. Geochim. Cosmochim. Acta 1981, 45, 381.
Hydrocarbon geochemistry of the Puget Sound region – II. Sedimentary diterpenoid, steroid and triterpenoid hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksVKmsLg%3D&md5=843be061f1374fdff7d77133e448a122CAS |

[65]  S. T. Belt, G. Massé, W. G. Allard, J.-M. Robert, S. J. Rowland, Novel monocyclic sester- and triterpenoids from the marine diatom, Rhizosolenia setigera. Tetrahedron Lett. 2003, 44, 9103.
Novel monocyclic sester- and triterpenoids from the marine diatom, Rhizosolenia setigera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovF2lt78%3D&md5=86e0e69372f810849559a2f4bc4748f6CAS |

[66]  Z. A. Rafii, R. S. Dodd, F. Fromard, Biogeographic variation in foliar waxes of mangrove species. Biochem. Syst. Ecol. 1996, 24, 341.
Biogeographic variation in foliar waxes of mangrove species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1WrsLw%3D&md5=850a24b6098084731f75feaa6d37d98eCAS |