Role of nanoparticles in analytical solid phase microextraction (SPME)
Katarzyna Zielińska A B and Herman P. van Leeuwen AA Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, NL-6703 HB Wageningen, the Netherlands.
B Corresponding author. E-mail: katarzyna.zielinska@wur.nl; kzielinska@gmail.com
Environmental Chemistry 10(2) 120-126 https://doi.org/10.1071/EN13004
Submitted: 8 January 2013 Accepted: 21 March 2013 Published: 9 May 2013
Environmental context. Organic hydrophobic compounds are present in water in low concentrations, and they can be analysed by means of a preconcentration technique called solid phase microextraction. We investigate the role of sorbing nanoparticles in the solid phase microextraction analysis of organic compounds. Our results show that nanoparticles are capable of partitioning between water and the solid phase and aggregate at the interface leading, most probably, to substantial overestimation of the original sample concentration.
Abstract. Solid phase microextraction (SPME) is commonly used to measure the free concentration of fairly hydrophobic substances in aqueous media on the basis of their partitioning between sample solution and a solid phase. Here we study the role of nanoparticles that may sorb the analyte in the sample medium. As an example case, the solid phase poly(dimethylsiloxane) (PDMS) is exposed to an aqueous dispersion containing silica nanoparticles with 10-nm radius. Confocal laser microscopic data show that these SiO2 nanoparticles do enter the PDMS and partition between the sample solution and solid phase. Moreover, they form aggregates at the surface of the solid phase. The overall partitioning of the SiO2 nanoparticles in the aqueous sample–PDMS system is examined and potential effects on the SPME analysis of organic analytes are indicated.
Additional keyword: nanoparticulate species.
References
[1] C. L. Arthur, J. Pawliszyn, Soild phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145.| Soild phase microextraction with thermal desorption using fused silica optical fibers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsVCmt7k%3D&md5=fa09c30a0965042f7f3be0b37323cdd0CAS |
[2] E. Y. Zeng, J. A. Noblet, Theoretical considerations on the use of solid-phase microextraction with complex environmental samples. Environ. Sci. Technol. 2002, 36, 3385.
| Theoretical considerations on the use of solid-phase microextraction with complex environmental samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVahtb4%3D&md5=2c6afa1e9d2f272830f919396412e216CAS | 12188369PubMed |
[3] K. Benhabib, R. M. Town, H. P. van Leeuwen, Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME). Langmuir 2009, 25, 3381.
| Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslOqt7s%3D&md5=fa9eac0305dcf5c44496866746e8fee3CAS | 19708138PubMed |
[4] X. Zhang, K. D. Oakes, S. Cui, L. Bragg, M. R. Servos, J. Pawliszyn, Tissue-specific in vivo bioconcentration of pharmaceuticals in rainbow trout (Oncorhynchus mykiss) using space-resolved solid-phase microextraction. Environ. Sci. Technol. 2010, 44, 3417.
| Tissue-specific in vivo bioconcentration of pharmaceuticals in rainbow trout (Oncorhynchus mykiss) using space-resolved solid-phase microextraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFOht7w%3D&md5=b9c7be9694529737b7ae3340908534a8CAS | 20387810PubMed |
[5] T. Kumazawa, X. P. Lee, K. Sato, O. Suzuki, Solid-phase microextraction and liquid chromatography/mass spectrometry in drug analysis. Anal. Chim. Acta 2003, 492, 49.
| Solid-phase microextraction and liquid chromatography/mass spectrometry in drug analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVyjur8%3D&md5=ef93fe2bb116ff70f845cb602083767cCAS |
[6] S. Ulrich, Solid-phase microextraction in biomedical analysis. J. Chromatogr. A 2000, 902, 167.
| Solid-phase microextraction in biomedical analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFeksbk%3D&md5=965abe0fc3cd34879acb19045ef5b997CAS | 11192153PubMed |
[7] B. Bojko, E. Cudjoe, G. A. Gomez-Rios, K. Gorynski, R. Jiang, N. Reyes-Garces, S. Risticevic, E. A. S. Silva, O. Togunde, D. Vuckovic1, J. Pawliszyn, SPME – quo vadis? Anal. Chim. Acta 2012, 750, 132.
| D. Vuckovic1, J. Pawliszyn, SPME – quo vadis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSgs7nO&md5=e595333e2dba9a0fbd622f3c822fe51fCAS | 23062435PubMed |
[8] J. Poerschmann, Z. Y. Zhang, F. D. Kopinke, J. Pawliszyn, Solid phase microextraction for determining the distribution of chemicals in aqueous matrices. Anal. Chem. 1997, 69, 597.
| Solid phase microextraction for determining the distribution of chemicals in aqueous matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtVynuw%3D%3D&md5=d5620c3f634d0eec2f63341a63101a83CAS |
[9] P. A. Neale, B. I. Escher, A. I. Schaefer, Quantification of solute-solute interactions using negligible-depletion solid-phase microextraction: measuring the affinity of estradiol to bulk organic matter. Environ. Sci. Technol. 2008, 42, 2886.
| Quantification of solute-solute interactions using negligible-depletion solid-phase microextraction: measuring the affinity of estradiol to bulk organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVaiu74%3D&md5=efd5069ba372ca3459fdacb2184e6464CAS | 18497139PubMed |
[10] A. G. Oomen, P. Mayer, J. Tolls, Nonequilibrium solid-phase microextraction for determination of the freely dissolved concentration of hydrophohic organic compounds: matrix effects and limitations. Anal. Chem. 2000, 72, 2802.
| Nonequilibrium solid-phase microextraction for determination of the freely dissolved concentration of hydrophohic organic compounds: matrix effects and limitations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1KnsLk%3D&md5=2de82c73b13997164ef79c63f5078f09CAS | 10905310PubMed |
[11] W. H. J. Vaes, E. U. Ramos, H. J. M. Verhaar, W. Seinen, J. L. M. Hermens, Measurement of the free concentration using solid-phase microextraction: binding to protein. Anal. Chem. 1996, 68, 4463.
| Measurement of the free concentration using solid-phase microextraction: binding to protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslKjtL0%3D&md5=ce8b1cf222c074b1bc88ca88d09fe020CAS |
[12] M. A. Jeannot, F. F. Cantwell, Solvent microextraction as a speciation tool: determination of free progesterone in a protein solution. Anal. Chem. 1997, 69, 2935.
| Solvent microextraction as a speciation tool: determination of free progesterone in a protein solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFSksb0%3D&md5=8fb93151cb689951e0db39c47bf4ec6eCAS | 9253247PubMed |
[13] M. B. Heringa, C. Hogevonder, F. Busser, J. L. M. Hermens, Measurement of the free concentration of octylphenol in biological samples with negligible depletion-solid phase microextraction (nd-SPME): analysis of matrix effects. J. Chromatogr. B 2006, 834, 35.
| Measurement of the free concentration of octylphenol in biological samples with negligible depletion-solid phase microextraction (nd-SPME): analysis of matrix effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFOgt7s%3D&md5=45a489dc6f19fb3d8d06a98a0494b5ecCAS |
[14] K. Zielińska, H. P. van Leeuwen, S. Thibault, R. M. Town, Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction. Langmuir 2012, 28, 14672.
| Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction.Crossref | GoogleScholarGoogle Scholar | 22989313PubMed |
[15] K. F. Poon, P. K. S. Lam, M. H. W. Lam, Determination of polynuclear aromatic hydrocarbons in human blood serum by proteolytic digestion – direct immersion SPME. Anal. Chim. Acta 1999, 396, 303.
| Determination of polynuclear aromatic hydrocarbons in human blood serum by proteolytic digestion – direct immersion SPME.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFWktrY%3D&md5=d7f723e0c0f22b1df5c91f3027138419CAS |
[16] M. Xie, Z.-Y. Yang, L.-J. Bao, E. Y. Zeng, Equilibrium and kinetic solid-phase microextraction determination of the partition coefficients between polychlorinated biphenyl congeners and dissolved humic acid. J. Chromatogr. A 2009, 1216, 4553.
| Equilibrium and kinetic solid-phase microextraction determination of the partition coefficients between polychlorinated biphenyl congeners and dissolved humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVCqu7g%3D&md5=f2a2ce6edaf087084c01c26d62c8ddabCAS | 19375083PubMed |
[17] E. Urrestarazu Ramos, S. N. Meijer, W. H. J. Vaes, H. J. M. Verhaar, J. L. M. Hermens, Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals. Environ. Sci. Technol. 1998, 32, 3430.
| Using solid-phase microextraction to determine partition coefficients to humic acids and bioavailable concentrations of hydrophobic chemicals.Crossref | GoogleScholarGoogle Scholar |
[18] R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373.
| Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12hsb%2FN&md5=a7cfe1b5b955c3f4ef4ef08a2f83c89dCAS | 22204603PubMed |
[19] B. Nowack, T. D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5.
| Occurrence, behavior and effects of nanoparticles in the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2mt7vJ&md5=d01ae06cb084737eeca6af664d97b1cbCAS | 17658673PubMed |
[20] A. A. Keller, H. Wang, D. Zhou, H. S. Lenihan, G. Cherr, B. J. Cardinale, R. Miller, Z. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962.
| Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFWgtLk%3D&md5=0bcf43839222844347fce0dc022fe9efCAS | 20151631PubMed |
[21] L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, W. J. Stark, Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007, 41, 4158.
| Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFSnsr8%3D&md5=4ba7ea5afe9847c6a892197d03343a96CAS | 17612205PubMed |
[22] M. B. Heringa, J. L. M. Hermens, Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). Trends Analyt. Chem. 2003, 22, 575.
| Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVCmt7o%3D&md5=6b83aad4901f152f27c17364ccca791fCAS |
[23] K. Benhabib, T. L. ter Laak, H. P. van Leeuwen, Steady-state diffusion regime in solid-phase microextraction kinetics. Anal. Chim. Acta 2008, 609, 113.
| Steady-state diffusion regime in solid-phase microextraction kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWku7o%3D&md5=a0d78dc13a6c45d2bbdf821250401129CAS | 18243879PubMed |
[24] J. Pawliszyn, Sample preparation: quo vadis? Anal. Chem. 2003, 75, 2543.
| Sample preparation: quo vadis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlKju7k%3D&md5=60642c841b77d1531ea120ee380c4a12CAS | 12948120PubMed |
[25] H. P. van Leeuwen, R. Cleven, J. Buffle, Voltammetric techniques for complexation measurements in natural aquatic media: role of the size of macromolecular ligands and dissociation kinetics of complexes. Pure Appl. Chem. 1989, 61, 255.
| Voltammetric techniques for complexation measurements in natural aquatic media: role of the size of macromolecular ligands and dissociation kinetics of complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhs1ahtb4%3D&md5=971c62222669f31033be54ba76e70692CAS |
[26] M. B. Heringa, D. Pastor, J. Algra, W. H. J. Vaes, J. L. M. Hermens, Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding: an example with H-3 Estradiol. Anal. Chem. 2002, 74, 5993.
| Negligible depletion solid-phase microextraction with radiolabeled analytes to study free concentrations and protein binding: an example with H-3 Estradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlSnu7c%3D&md5=9936c5df8a2c977dccf3232afec6d83eCAS | 12498194PubMed |
[27] I. Bruheim, X. C. Liu, J. Pawliszyn, Thin-film microextraction. Anal. Chem. 2003, 75, 1002.
| Thin-film microextraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlOjsA%3D%3D&md5=2a9d13aee038669b50430c82beab9c07CAS | 12622398PubMed |
[28] Z.-Y. Yang, K. A. Maruya, D. Greenstein, D. Tsukada, E. Y. Zeng, Experimental verification of a model describing solid phase microextraction (SPME) of freely dissolved organic pollutants in sediment porewater. Chemosphere 2008, 72, 1435.
| Experimental verification of a model describing solid phase microextraction (SPME) of freely dissolved organic pollutants in sediment porewater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslGmsLk%3D&md5=ab740a779a714257e94f58d98fb542a0CAS | 18597813PubMed |
[29] J. Crank, The Mathematics of Diffusion 1975 (Oxford University Press: Oxford, UK).
[30] T. K. L. Meyvis, S. C. De Smedt, P. Van Oostveldt, J. Demeester, Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research. Pharm. Res. 1999, 16, 1153.
| Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVynt70%3D&md5=5420995cbabad2659ad1f3dcc557a9ceCAS |
[31] E. Schaer, R. Ravetti, E. Plasari, Study of silica particle aggregation in a batch agitated vessel. Chem. Eng. Prog. 2001, 40, 277.
| Study of silica particle aggregation in a batch agitated vessel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFOntb0%3D&md5=a8ba78e13fb98fb3ed6c0f6e0910e77cCAS |
[32] M. Elimelech, J. Gregory, X. Jia, R.A. Williams, Particle Deposition and Aggregation: Measurement, Modelling and Simulation 1998 (Butterworth-Heinemann: Oxford, UK).
[33] J. P. Cohen Addad, S. Touzet, Poly(dimethylsiloxane)-silica mixtures: intermediate states of adsorption and swelling properties. Polymer 1993, 34, 3490.
| Poly(dimethylsiloxane)-silica mixtures: intermediate states of adsorption and swelling properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmt1OjtLw%3D&md5=2c72fc0aff589741251269d28a4bfd74CAS |
[34] K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Achuler, E. T. Alardi, D. J. Beebe, Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 2009, 9, 2132.
| Biological implications of polydimethylsiloxane-based microfluidic cell culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2ksbY%3D&md5=6fc0f2227af5fd1450332d9d965b6f5dCAS | 19606288PubMed |
[35] J. J. Lange, M. M. Collinson, C. T. Culbertson, D. A. Higgins, Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films. Anal. Chem. 2009, 81, 10089.
| Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhsL%2FL&md5=a3ff9578393b5be0384201f03cf599fbCAS | 19928808PubMed |
[36] K. F. Poon, P. K. S. Lam, M. H. W. Lam, Determination of polychlorinated biphenyls in human blood serum by SPME. Chemosphere 1999, 39, 905.
| Determination of polychlorinated biphenyls in human blood serum by SPME.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVynu7c%3D&md5=bfcfae3fd6216d71ec8414d93c814753CAS | 10448565PubMed |
[37] J. Ai, Solid phase microextraction for quantitative analysis in nonequilibrium situations. Anal. Chem. 1997, 69, 1230.
| Solid phase microextraction for quantitative analysis in nonequilibrium situations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhslynur0%3D&md5=ffee51a6aa243bc8ef4e024fc96d4924CAS |
[38] F. E. Swallow, Viscosity of polydimethylsiloxane gum: shear and temperature dependence from dynamic and capillary rheometry. J. Appl. Polym. Sci. 2002, 84, 2533.
| Viscosity of polydimethylsiloxane gum: shear and temperature dependence from dynamic and capillary rheometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWksLY%3D&md5=3d66651bbcf9f2e3bc82f70a942620a5CAS |