Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Experimental hydrophobicity parameters of perfluorinated alkylated substances from reversed-phase high-performance liquid chromatography

Pim de Voogt A B D , Lluis Zurano A , Peter Serné A and Joris J. H. Haftka A C
+ Author Affiliations
- Author Affiliations

A IBED – Earth Surface Science, Universiteit van Amsterdam, PO Box 94240, 1090 GE Amsterdam, the Netherlands.

B KWR Watercycle Research Institute, PO Box 1072, NL-3430 BB Nieuwegein, the Netherlands.

C Present address: IRAS, Utrecht University, PO Box 80.178, NL-3508 TD Utrecht, the Netherlands.

D Corresponding author. Email: w.p.devoogt@uva.nl

Environmental Chemistry - https://doi.org/10.1071/EN12132
Submitted: 3 September 2012  Accepted: 29 October 2012   Published online: 10 December 2012

Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND

Environmental context. Perfluorinated compounds are synthetic chemicals shown to be present in the blood of humans. To study how these contaminants get into our blood requires a good understanding of their physicochemical properties. We describe an alternative way to obtain values for how perfluorinated compounds distribute between water and fatty phases (mimicking e.g. gut content and gut wall), which is essential information for modelling and understanding the environmental fate of these chemicals.

Abstract. Capacity factors of perfluorinated alkylated substances were obtained from isocratic reversed-phase high-performance liquid chromatography–mass spectrometry experiments at different organic modifier strengths of the mobile phase. The resulting capacity factor v. modifier strengths plots were extrapolated to obtain capacity factors at 100 % water (k0) that can serve as indicators of the hydrophobicity of the perfluorinated acids. Values of log k0 were shown to increase linearly with the number of CF2 units in the fluorinated alkyl chain.


References

[1]  A. Sabljić, H. Güsten, H. Verhaar, J. Hermens, QSAR modelling of soil sorption. Improvements and systematics of log Koc vs. log Kow correlations. Chemosphere 1995, 31, 4489.
QSAR modelling of soil sorption. Improvements and systematics of log Koc vs. log Kow correlations.Crossref | GoogleScholarGoogle Scholar |

[2]  R. S. Boethling, P. H. Howard, W. M. Meylan, Finding and estimating chemical property data for environmental assessment. Environ. Toxicol. Chem. 2004, 23, 2290.
Finding and estimating chemical property data for environmental assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGrsrk%3D&md5=8e711043c74d12176834877bf6b9a983CAS |

[3]  P. de Voogt, J. W. M. Wegener, J. C. Klamer, G. A. van Zijl, H. Govers, Prediction of environmental fate and effects of heteroatomic polycyclic aromatics by QSARs: the position of n-octanol/water partition coefficients. Biomed. Environ. Sci. 1988, 1, 194.
| 1:STN:280:DyaK3c%2FislSmug%3D%3D&md5=c08da3a4f53e3abd958df83aad68ea48CAS |

[4]  S. Griffin, S. Grant Wyllie, J. Markham, Determination of octanol–water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1999, 864, 221.
Determination of octanol–water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsl2mu7c%3D&md5=8d0b693d1a228c1b3d40faa9e661eefeCAS |

[5]  P. Jing, P. J. Rodgers, S. Amemiya, High lipophilicity of perfluoroalkyl carboxylate and sulfonate: implications for their membrane permeability. J. Am. Chem. Soc. 2009, 131, 2290.
High lipophilicity of perfluoroalkyl carboxylate and sulfonate: implications for their membrane permeability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ohu7k%3D&md5=2ccd2e7bdfcc46bad253bae5dfc1166bCAS |

[6]  P. de Voogt, G. A. van Zijl, H. Govers, U. A. Th. Brinkman, Reversed-phase thin-layer chromatography and structure-activity relationships of polycyclic (hetero)aromatic hydrocarbons. J. Planar. Chromatogr. 1990, 3, 24.
| 1:CAS:528:DyaK3cXmtVKhtbg%3D&md5=01c50e384b978ac40eccb44b5898175eCAS |

[7]  T. Braumann, Determination of hydrophobic parameters by reversed-phase liquid-chromatography – theory, experimental techniques, and application in studies on quantitative structure–activity relationships. J. Chromatogr. A 1986, 373, 191.
Determination of hydrophobic parameters by reversed-phase liquid-chromatography – theory, experimental techniques, and application in studies on quantitative structure–activity relationships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlWmsw%3D%3D&md5=e7b21f82f3af11054134e657dd72c2c8CAS |

[8]  B. D. Key, R. D. Howell, C. S. Criddle, Fluorinated organics in the biosphere. Environ. Sci. Technol. 1997, 31, 2445.
Fluorinated organics in the biosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1Cqsb0%3D&md5=02c4abaa87176789b5ccc63416a9e864CAS |

[9]  F. Hekster, R. W. P. M. Laane, P. de Voogt, Environmental and toxicity effects of perfluoroalkylated substances. Rev. Environ. Contam. Toxicol. 2003, 179, 99.
Environmental and toxicity effects of perfluoroalkylated substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVGmsrs%3D&md5=7b7df5f898e2c594d450fc35db1d2430CAS |

[10]  J. R. Parsons, M. Sáez, J. Dolfing, P. de Voogt, Biodegradation of perfluorinated compounds. Rev. Environ. Contam. Toxicol. 2008, 196, 53.
Biodegradation of perfluorinated compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlynsQ%3D%3D&md5=09daaf86593d51cda4b77da9944504c4CAS |

[11]  T. Frömel, T. P. Knepper, Biodegradation of fluorinated alkyl substances. Rev. Environ. Contam. Toxicol. 2010, 208, 161.
Biodegradation of fluorinated alkyl substances.Crossref | GoogleScholarGoogle Scholar |

[12]  K. Prevedouros, I. T. Cousins, R. C. Buck, S. H. Korzeniowski, Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32.
Sources, fate and transport of perfluorocarboxylates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gru7zK&md5=1e94f39eee912a131accc642e304dd43CAS |

[13]  H. P. Arp, C. Niederer, K. U. Goss, Predicting the partitioning behavior of various highly fluorinated compounds. Environ. Sci. Technol. 2006, 40, 7298.
Predicting the partitioning behavior of various highly fluorinated compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWnsrnO&md5=5b614e40e563b938000e3dd7d319d46aCAS |

[14]  Z. Wang, Z. M. MacLeod, I. T. Cousins, M. Scheringer, K. Hungerbühler, Using COSMOtherm to predict physicochemical properties of poly- and perfluorinated alkyl substances (PFASs). Environ. Chem. 2011, 8, 389.
| 1:CAS:528:DC%2BC3MXhtFaqsL3F&md5=15eb4f94095d30a477bd179b0f68e384CAS |

[15]  T. Braumann, Determination of hydrophobicity parameters by reversed-phase liquid chromatography: theory, experimental techniques and application in studies on quantitative structure-activity relationships. J. Chromatogr. A 1986, 373, 191.
Determination of hydrophobicity parameters by reversed-phase liquid chromatography: theory, experimental techniques and application in studies on quantitative structure-activity relationships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlWmsw%3D%3D&md5=e7b21f82f3af11054134e657dd72c2c8CAS |

[16]  A. Bechalany, A. Tsantili-Kakoulidou, N. Tayar, B. Testa, Measurement of lipophilicity indexes by reversed-phase high-performance liquid-chromatography – comparison of 2 stationary phases and various eluents. J. Chromatogr. A 1991, 541, 221.
Measurement of lipophilicity indexes by reversed-phase high-performance liquid-chromatography – comparison of 2 stationary phases and various eluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVarsr4%3D&md5=62e73899577ebb17c88427818e8d3ac9CAS |

[17]  W. J. Lambert, Modeling oil–water partitioning and membrane permeation using reversed-phase chromatography. J. Chromatogr. A 1993, 656, 469.
Modeling oil–water partitioning and membrane permeation using reversed-phase chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFeitbs%3D&md5=59c16f410087c06ecd9daeeb21705231CAS |

[18]  P. J. Schoenmakers, H. A. H. Billiet, L. de Galan, Influence of organic modifiers on the retention behavior in reversed-phase liquid-chromatography and its consequences for gradient elution. J. Chromatogr. A 1979, 185, 179.
Influence of organic modifiers on the retention behavior in reversed-phase liquid-chromatography and its consequences for gradient elution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXht1Whurg%3D&md5=7b737ccb5081f201cb01b1dea59b0be4CAS |

[19]  W. E. Hammers, G. J. Meurs, C. L. de Ligny, Correlations between liquid chromatographic capacity ratio data on Lichrosorb-RP18 and partition coefficients in the octanol/water system. J. Chromatogr. A 1982, 247, 1.
Correlations between liquid chromatographic capacity ratio data on Lichrosorb-RP18 and partition coefficients in the octanol/water system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsFWgtL8%3D&md5=949543223ee718e6d49ec84b9af983a6CAS |

[20]  P. de Voogt, J. W. M. Wegener, U. A. Th. Brinkman, Govers. Retention of neutral and basic heteroaromatic hydrocarbons in RPLC systems and its use in predictive studies. I. Nature and concentration of the organic modifier. Sci. Total Environ. 1991, 109–110, 69.
Govers. Retention of neutral and basic heteroaromatic hydrocarbons in RPLC systems and its use in predictive studies. I. Nature and concentration of the organic modifier.Crossref | GoogleScholarGoogle Scholar |

[21]  P. Jandera, Correlation of retention and selectivity of separation in reversed-phase high-performance liquid chromatography with interaction indices and with lipophilic and polar structural indices. J. Chromatogr. A 1993, 656, 437.
Correlation of retention and selectivity of separation in reversed-phase high-performance liquid chromatography with interaction indices and with lipophilic and polar structural indices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivVSqs7c%3D&md5=aebd1510e8e3505143e92f7394fada80CAS |

[22]  B. Herbreteau, C. Graft, E. Voisin, M. Lafosse, L. Morin-Allory, Interpretation of the chromatographic behavior of perhydrogenated and perfluorinated polyoxyethylene surfactants by molecular modeling. Chromatographia 1999, 50, 490.
Interpretation of the chromatographic behavior of perhydrogenated and perfluorinated polyoxyethylene surfactants by molecular modeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlylsrg%3D&md5=6159c0bc5a2b185297e5f7d16d657850CAS |

[23]  S. Rayne, K. Forest, K. J. Friesen, Computational approaches may underestimate pKa values of longer-chain perfluorinated carboxylic acids: Implications for assessing environmental and biological effect. J. Environ. Sci. Health A 2009, 44, 317.
| 1:CAS:528:DC%2BD1MXht1akurk%3D&md5=fa380cf170bb95f8ab3b8aa79bceddd6CAS |

[24]  R. Kostiainen, T. J. Kauppila, Effect of eluent on the ionization process in liquid chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 685.
Effect of eluent on the ionization process in liquid chromatography-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlyjsA%3D%3D&md5=fc742dfea47aee28e1f20bd3ca99377dCAS |

[25]  R. C. Buck, J. Franklin, U. Berger, J. M. Conder, I. T. Cousins, P. de Voogt, A. A. Jensen, K. Kannan, S. A. Mabury, S. P. J. van Leeuwen, Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification and origins. Integr. Environ. Assess. Manag. 2011, 7, 513.
Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification and origins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2jtrnM&md5=6b2ea97bccdec960ec31da6ebee2c3b9CAS |

[26]  H. B. Krop, P. de Voogt, Environmentally relevant physicochemical properties of perfluorinated alkylated substances. Report PERFORCE-2: Improving the PFAS database 2008 (University of Amsterdam: Amsterdam).

[27]  K. U. Goss, The pKa values of PFOA and other highly fluorinated carboxylic acids. Environ. Sci. Technol. 2008, 42, 456.
The pKa values of PFOA and other highly fluorinated carboxylic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWqsLrO&md5=211b2f4a1a5c70c0dd538ee255c2bacbCAS |

[28]  R. K. Gilpin, M. Jaroniec, S. Lin, Studies of the surface composition of phenyl and cyanopropyl bonded phases under reversed-phase liquid chromatographic conditions using alkanoate and perfluoroalkanoate esters. Anal. Chem. 1991, 63, 2849.
Studies of the surface composition of phenyl and cyanopropyl bonded phases under reversed-phase liquid chromatographic conditions using alkanoate and perfluoroalkanoate esters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVOit7w%3D&md5=367fc3572362cc16bb26dc033c8b3b57CAS |

[29]  B. C. Kelly, M. G. Ikonomou, J. D. Blair, B. Surridge, D. Hoover, R. Grace, F. A. P. C. Gobas, Perfluoroalkyl contaminants in an arctic marine food web: trophic magnification and wildlife exposure. Environ. Sci. Technol. 2009, 43, 4037.
Perfluoroalkyl contaminants in an arctic marine food web: trophic magnification and wildlife exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1Shu7k%3D&md5=b97eaaad31104316726ce8ef55a0e9b9CAS |