Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
REVIEW (Open Access)

The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

Thomas A. Douglas A AA , Lisa L. Loseto B , Robie W. Macdonald C , Peter Outridge D , Aurélien Dommergue E , Alexandre Poulain F , Marc Amyot G , Tamar Barkay H , Torunn Berg I , John Chételat J , Philippe Constant K , Marlene Evans L , Christophe Ferrari M , Nikolaus Gantner N , Matthew S. Johnson O , Jane Kirk P , Niels Kroer Q , Catherine Larose R , David Lean S , Torkel Gissel Nielsen T , Laurier Poissant U , Sigurd Rognerud V , Henrik Skov Q W , Søren Sørensen X , Feiuye Wang Y , Simon Wilson Z and Christian M. Zdanowicz D
+ Author Affiliations
- Author Affiliations

A US Army Cold Regions Research and Engineering Laboratory, PO Box 35170, Fort Wainwright, AK 99709, USA.

B Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg MB, R3T 2N6, Canada. Email: lisa.loseto@dfo-mpo.gc.ca

C Department of Fisheries and Oceans, Institute of Ocean Sciences, PO Box 6000, Sidney, BC, V8L 4B2, Canada. Email: robie.macdonald@dfo-mpo.gc.ca

D Natural Resources Canada, Geological Survey of Canada, 601 Booth Sreet Ottawa, ON, K1A 0E8, Canada. Email: outridge@nrcan.gc.ca; czdanowi@nrcan.gc.ca

E UJF – Grenoble 1/CNRS, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE) UMR 5183, BP 53, F-38041 Grenoble, France. Email: dommergue@lgge.obs.ujf-grenoble.fr

F Biology Department, University of Ottawa, 30 Marie Curie Street, Ottawa, ON, K1N 6N5, Canada. Email: apoulain@uottawa.ca

G GRIL, Département de Sciences Biologiques, Université de Montréal, CP 6128, Succ. Centre-Ville, Pavillon Marie-Victorin, Montréal, QC, H3C 3J7, Canada. Email: m.amyot@umontreal.ca

H Rutgers University, Department of Biochemistry and Microbiology, 76 Lipman Drive, New Brunswick, NJ 08901-8525, USA. Email: barkay@aesop.rutgers.edu

I Norwegian University of Science and Technology, Department of Chemistry, Gløshaugen, NO-7491, Trondheim, Norway. Email: torunn@chem.ntnu.no

J National Wildlife Research Centre, Environment Canada, Ottawa, ON, K1A 0H3, Canada. Email: john.chetelat@ec.gc.ca

K Centre INRS-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, H7V 1B7, Canada. Email: philippe.constant@iaf.inrs.ca

L Environment Canada, National Water Research Institute, 11 Innovation Boulevard, Saskatoon, SK, S7N 3H5, Canada. Email: marlene.evans@ec.gc.ca

M CNRS-Laboratoire de Glaciologie et Géophysique de l’Environnement, 54, rue Molière, BP 96, Grenoble, Saint-Martin d’Hères cedex, F-38402 France. Email: ferrari@lgge.obs.ujf-grenoble.fr

N Department of Geography University of Victoria, Victoria, BC, V8W 3R4, Canada. Email: gantnern@uvic.ca

O Department of Chemistry University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark. Email: msj@kiku.dk

P Aquatic Ecosystem Protection Research Division, Environment Canada, Burlington, ON, L7R 4A6, Canada. Email: jane.kirk@ec.gc.ca

Q Department of Environmental Science, Aarhus University Frederiksborgvej 399, Post Box 358, DK-4000 Roskilde, Denmark. Email: nk@dmu.dk; hsk@dmu.dk

R Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Université de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully, France. Email: catherine.larose@ec-lyon.fr

S PO Box 309, Apsley, ON, K0L 1A0, Canada. Email: drslean@gmail.com

T National Institute of Aquatic Resources, DTU Aqua Section for Ocean Ecology and Climate Technical University of Denmark, DTU Kavalergården 6, DK-2920 Charlottenlund, Denmark. Email: tgin@aqua.dtu.dk

U Environnement Canada, Section de la Recherche sur les Écosystèmes Fluviaux, 105 rue McGill, Montréal, QC, H2Y 2E7, Canada. Email: laurier.poissant@ec.gc.ca

V Norwegian Institute for Water Research, Branch Office East, Sandvikaveien 59, NO-2312 Ottestad, Norway.

W University of Southern Denmark, Institute of Chemical Engineering and Biotechnology and Environmental Technology, Niels Bohrs Allé 1, DK-5230 Odense M, Denmark.

X Department of Microbiology, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen, Denmark. Email: sjs@bi.ku.dk

Y Center for Earth Observation Science Department of Environment and Geography & Department of Chemistry, University of Manitoba Winnipeg, MB, R3T 2N2, Canada. Email: wangf@ms.umanitoba.ca

Z Arctic Monitoring and Assessment Programme (AMAP) Secretariat, Gaustadalléen 21, N-0349 Oslo, Norway. Email: s.wilson@inter.nl.net

AA Corresponding author. Email: thomas.a.douglas@usace.army.mil




Dr Thomas A. Douglas has worked as a geochemist at the U.S. Army’s Cold Regions Research and Engineering Laboratory in Fairbanks, Alaska since 2001. He uses geochemical tracers to investigate environmental processes occurring in the snow pack, on sea ice, and in watersheds containing permafrost. Recent projects have focussed on the interactions between atmospheric chemical compounds, like mercury, and the snow surface and measurements of the chemical composition of permafrost ice features. He also has ongoing projects focussed on predicting the response of permafrost to climate warming and the potential release of carbon from permafrost soils.



Dr Lisa L. Loseto is an Arctic marine ecologist with Fisheries and Oceans Canada in Winnipeg. Her research focuses on characterising beluga health, habitat use, diet and contaminant exposure in context with surrounding ecosystem drivers. Her research programs are carried out in close partnership with northern communities and co-management boards to address ecosystem health and resource management questions. She uses biomarkers such as fatty acids to define ecosystem structure and connectivity from which to construct a baseline food web and consider responses to stressors or impacts such as climate change, contaminants and industrial activity.



Dr Robie Macdonald is a geochemical oceanographer with Fisheries and Oceans Canada specialising in ocean pathways. His interests include the organic carbon cycle, the hydrological cycle, climate change and contaminant pathways in the Arctic and Pacific Oceans. He directs interdisciplinary programs to study the environmental pathways of contaminants, including their delivery, transport and elimination from aquatic systems. He determines the behaviour of contaminants in the context of natural systems bringing to bear such tools as water-mass analysis, transient and steady state tracers, stable isotope analyses (oxygen, carbon and lead), the determination of particle fluxes and sedimentation rates, multivariate statistics and modelling.



Peter Outridge is a biogeochemist working on trace metals in the environment. His particular research interests are sedimentary metal chemistry, lead isotopes as tracers, mercury in polar regions, and the impacts of climate change on environmental metal dynamics and fate. He is co-chair of the Mercury Experts Group for the Arctic Monitoring and Assessment Programme, an inter-governmental agency concerned with contaminants in the Arctic.



Dr A. Dommergue has worked as a chemist at the Lab of Glaciology in Grenoble, France. He is also a teacher at the Université Joseph Fourier – Grenoble 1 since 2006. He studies the fate of mercury in polar snowpacks but he is also involved in retrieving the past atmospheric patterns of mercury using snow and firn air archives. He is also involved in the atmospheric monitoring program (GMOS Global Mercury Observation System) and he is in charge of two monitoring sites in Antarctica and a third one in the Indian Ocean (Amsterdam Island).



Dr Alexandre Poulain’s research interests lie at the intersection of biogeochemistry, molecular biology and microbiology, using combined field and lab-based approaches. He is particularly interested in unravelling complex biogeochemical transformations at the interfaces of water, ice, snow, soil and air, and understanding the role of microbes in these processes. His laboratory develops and uses molecular biology and bacterial tools to track the mobility and toxicity of contaminants in the environment and to evaluate how environmental stressors affect microbial communities. The primary goal of his work is to provide data to improve models predicting the fate and toxicity of contaminants in the environment. He has been involved in remote, Northern and Arctic research for 9 years.



Dr Marc Amyot is full professor and chair of the department of biological sciences at Université de Montréal, Montreal, Canada. He has worked on mercury cycling in Arctic aquatic systems since 1995. His laboratory has studied the biological and photochemical redox transformations of Hg in water and snow. More recently, he has conducted studies on thaw ponds as sites of Hg methylation in the Eastern Canadian Arctic, and on the importance of photodemethylation of methylmercury in these ponds. He has also investigated the trophic transfer of mercury in Arctic food webs in the changing North.



Dr Tamar Barkay, a professor at Rutgers University, NJ, since 1999, has studied the microbiology of the mercury cycle for over 35 years. Her lab uses microbiological, environmental, and molecular tools to study the mechanisms by which microbes transform mercury and to define their role in the speciation and distribution of mercury in various environments. On-going projects examine the potential contribution of mercury reduction by Arctic bacteria to the formation of elemental mercury in Arctic environments, pathways of methylmercury formation in Northern wetland ecosystems and how these are affected by global warming and mercury biogeochemistry in Yellowstone National Park.



Prof Torunn Berg has been a professor at the Norwegian University of Science and Technology since 2006. She was a Ph.D. student, scientist and senior scientist at the Norwegian Institute for Air Research (NILU) from 1988 to 2009. She is responsible for the Norwegian mercury speciation measurements at the Zeppelin station as well as flux measurements at Ny-Ålesund, Svalbard. Her interest is also related to trace metals in precipitation-air and biomonitor mosses.



Dr John Chételat is an aquatic ecologist that studies the fate of mercury in freshwater ecosystems. His research focuses on how environmental, biological and ecological processes affect the uptake and biomagnification of mercury in aquatic food webs. Currently, Dr Chételat is a Research Scientist with Environment Canada at the National Wildlife Research Centre in Ottawa, Canada.



Dr Philippe Constant did his Ph.D. (2004–08) under the supervision of Dr Richard Villemur (INRS-Institut Armand-Frappier; INRS-IAF) and Dr Laurier Poissant (Environment Canada) studying the biogeochemical processes of mercury and molecular hydrogen in temperate and subarctic ecosystems. After a postdoctoral fellow (2008–11) in the research group of Dr Ralf Conrad (Max Plank Institute for Terrestrial Microbiology), he joined the INRS-IAF as an assistant professor. He is currently investigating the interactions between soil microorganisms scavenging climate relevant atmospheric trace gases (e.g. H2, CO) and those catalyzing other globally important biogeochemical processes in soil, such as carbon and nitrogen turnover.



Marlene Evans is a Research Scientist at Environment Canada’s National Hydrology Research Centre in Saskatoon. In northern Canada, she is investigating contaminant trends in Great Slave Lake burbot and lake trout; sea-run char at two coastal communities; and contributing to landlocked char and ringed seal studies. In the Prairie Provinces, she is investigating mercury biomagnification rates in warm-water food webs (pike) and leading the temporal chapter assessing Canada-wide trends in mercury deposition in lakes and concentrations in biota. She is contributing to studies around Alberta’s oil sands, focussing on mercury trends in fish and metals and PAHs in sediments.



Christophe Ferrari has been Professor at University of Grenoble (France) since 2004 and a researcher at the Laboratoire de Glaciologie et Géophysique de l’Environnement (CNRS/UJF) since 1996 as assistant Professor. He has been since 2003 junior member of the Institut Universitaire de France (IUF). He has been a chemist working on heavy metals in the environment and especially mercury in polar and alpine regions. His main focus has been to better understand methylation pathways in pristine regions and also to better understand mercury pathways from atmospheric deposition to contamination of polar ecosystems.



Dr Nikolaus Gantner is an Ecotoxicologist currently appointed as NSERC Banting Fellow and Adjunct Assistant Professor at the Department of Geography at the University of Victoria, Victoria, BC, Canada. Nikolaus’ research focuses on the transfer of contaminants through aquatic food webs. Past research included the ecological characterisation of Arctic lake food webs using stable isotopes and parallel analysis of mercury and mercury isotopes, with the goal to better understand the transfer of mercury and potential for isotope fractionation in food webs. In his ongoing research, Nikolaus incorporates knowledge from multiple disciplines to address challenging environmental issues using a collaborative approach.



Matthew S. Johnson is a Senior Lecturer at the Department of Chemistry at the University of Copenhagen. He teaches courses on environmental chemistry, physical and quantum chemistry, and scientific writing. His main research interest is atmospheric chemistry, including kinetics and spectroscopy, and stable isotopes in atmospheric trace gases. He is a co-author of more than 70 articles in peer-reviewed journals. He has invented and patented a method for efficient emissions control and improving building energy efficiency. He has worked as a researcher for Honeywell and Medtronic and has research collaborations with groups around the world, including Ford Motor Company and the Tokyo Institute of Technology.



Jane Kirk is an Environment Canada Research Scientist at the Canada Centre for Inland Waters in Burlington, Ontario, Canada. She completed her Ph.D. in Environmental Biology and Ecology in 2009 from the University of Alberta. Jane’s research examines the natural biogeochemical cycling of elements in the environment and human disruptions to these cycles. Jane is currently examining the transport and fate of mercury in Canadian temperate and Arctic ecosystems to try to understand why concentrations of methyl mercury, the toxic and bioaccumulative form of mercury, are so high in freshwater fishes and marine mammals.



Dr Niels Kroer is Head of the Department of Environmental Sciences at Aarhus University, Denmark. His research is focussed on the activity, functional diversity and evolution of natural microbial communities. Specifically, his expertise includes bacterial nutrient cycling, measurements of in situ microbial activity, environmental factors affecting the rate of horizontal exchange of genetic material between bacteria, and bacterial adaptation to environmental stressors such as mercury. Recent projects have focussed on microbial communities in snow and the role of bacteria in the Arctic Hg cycle.



Dr Catherine Larose is currently working at the Microbial Environmental Genomics Group at the University of Lyon in France. Her environmental genomics (mostly metagenomics) research involves exploring the functional and structural relationships between the environmental genetic resources within Arctic snow ecosystems. High throughput techniques, such as microarrays and pyrosequencing, are used to produce data that supports relevant hypotheses. Much of her current microbial ecology research is on the perturbations of microbial communities and the adaptation of microorganisms to xenobiotic compounds such as mercury.



Dr David Lean is a retired Professor of Ecotoxicology in the Department of Biology at the University of Ottawa. His research is focussed on the effects of toxic substances on living systems including processes that control the chemical transport, fate, persistence and biological accumulation of toxic substances.



After receiving his Ph.D. in 1990 in biological oceanography Torkel Gissel Nielsen was employed at the Danish Institute for Fisheries Research. From 1991 he was employed as a marine biologist at National Environmental Research Institute (NERI), department for Marine Ecology and Microbiology, since 1994 as Senior Research Scientist and since 1999 as Research Professor. During the employment at NERI he established extensive research in Arctic biological oceanography with the overall focus on the structure of the arctic pelagic food web and climate impacts on the pelagic food web. Since 2009 he has held a professorship in environmental biological oceanography at National Institute of Aquatic Resources, Technical University of Denmark, working primarily with Arctic biological oceanography leading a group of six M.Sc. and five Ph.D. students.



Dr Laurier Poissant is a retired Senior Scientific Researcher who worked at Environment Canada from 1991 to 2012. His specialty is in investigating the atmospheric processes of contaminants and their interaction with the environment. He has performed research on air-borne mercury and its interaction with northern, aquatic, land and plant environments, on pesticide use in agricultural environments, on the impact of greenhouse gases on St Lawrence and Arctic ecosystems and on contaminant fugacity (water, snow, air, soil, vegetation).



Sigurd Rognerud is a Senior Scientist at the Norwegian Institute for Water Research (NIVA). His interest is in limnology, especially with regard to contamination of mercury, other heavy metals, and persistent organic pollutants in freshwater ecosystems. Recent projects have focussed on contamination of mercury and other metals in aquatic ecosystems around a large copper–nickel smelter in Subartic Kola Peninsula, Russia. He has also been working with changes in mercury contamination in fish populations following clear cutting of catchments and temporal trends of mercury in lake sediments and fish in Norway.



Since 1993, Prof Henrik Skov has worked as Principal Scientist at the National Environmental Research Institute, now called Department of Environmental Science, Aarhus University, Denmark. He is an atmospheric chemist and for the last 15 years he has been working with the fate of long-range transported pollution to the Arctic. He is responsible for the monitoring station, Station Nord in north-east Greenland. During the last 3 years, he has also been involved in studies of short lived climate forcers. Furthermore, he is Adjunct Professor at the Institute of Chemical Engineering and Biotechnology and Environmental Technology, University of Southern Denmark.



Professor Søren Sørensen has been the team leader of the Molecular Microbial Ecology Group at the University of Copenhagen since 2008. The main objective of the group’s studies is to evaluate the extent of genetic flow within the natural communities and the responses to environmental perturbations. Molecular techniques such as Q-PCR and pyrosequencing are used to investigate resilience and resistance of community structure in soil. The group has been pioneering in the environmental application of specific whole cell biosensors and other single cell technologies with a focus on flow cytometric analysis. He has co-authored more than 200 scientific papers in international peer reviewed journals, books and presentations at international meetings.



Dr Feiyue Wang is Professor of Environmental Chemistry and Biogeochemistry at the University of Manitoba, Winnipeg, Canada. An aquatic chemist by training, Dr Wang’s research interests extend from molecular-level interactions of metal ions across environmental interfaces to global-scale interactions between chemical contamination and climate change. His recent research has centred on mercury as a global contaminant and as a tracer for other contaminants, and on sea ice geochemistry. Dr Wang leads the Sea–ice Environmental Research Facility (SERF), the first experimental sea ice facility in Canada.



Dr Simon J. Wilson is Deputy Executive Secretary of the Arctic Monitoring and Assessment Programme (AMAP) Secretariat, in Oslo, Norway. Based in the Netherlands, he has a background in environmental sciences and trace metal chemistry. His work areas include AMAP data management and communication and outreach, and in particular the development of AMAP science-based information products for policy-makers. His most recent activities involve work on assessments of mercury in the Arctic, and Arctic cryospheric change, and he is currently coordinating project work under and AMAP/UNEP international collaboration to produce an updated global inventory of anthropogenic emissions of mercury to air.



Dr Christian Zdanowicz is a glaciologist with the Geological Survey of Canada in Ottawa, where he has worked since 1999. He specialises in the study of climate and atmospheric changes in polar and alpine regions through the analysis of glacier cores. Over the past decade, he has conducted extensive work on the long-range transport and deposition of atmospheric contaminants in the Canadian Arctic and the Yukon Territory. His most recent work, conducted under the auspices of the 2007–08 International Polar Year, focussed on the cycling of atmospheric mercury in glaciated catchments of Baffin Island.

Environmental Chemistry 9(4) 321-355 https://doi.org/10.1071/EN11140
Submitted: 12 November 2011  Accepted: 5 May 2012   Published: 20 August 2012

Journal Compilation © CSIRO Publishing 2012 Open Access CC BY-NC-ND

Environmental context. Mercury, in its methylated form, is a neurotoxin that biomagnifies in marine and terrestrial foodwebs leading to elevated levels in fish and fish-eating mammals worldwide, including at numerous Arctic locations. Elevated mercury concentrations in Arctic country foods present a significant exposure risk to Arctic people. We present a detailed review of the fate of mercury in Arctic terrestrial and marine ecosystems, taking into account the extreme seasonality of Arctic ecosystems and the unique processes associated with sea ice and Arctic hydrology.

Abstract. This review is the result of a series of multidisciplinary meetings organised by the Arctic Monitoring and Assessment Programme as part of their 2011 Assessment ‘Mercury in the Arctic’. This paper presents the state-of-the-art knowledge on the environmental fate of mercury following its entry into the Arctic by oceanic, atmospheric and terrestrial pathways. Our focus is on the movement, transformation and bioaccumulation of Hg in aquatic (marine and fresh water) and terrestrial ecosystems. The processes most relevant to biological Hg uptake and the potential risk associated with Hg exposure in wildlife are emphasised. We present discussions of the chemical transformations of newly deposited or transported Hg in marine, fresh water and terrestrial environments and of the movement of Hg from air, soil and water environmental compartments into food webs. Methylation, a key process controlling the fate of Hg in most ecosystems, and the role of trophic processes in controlling Hg in higher order animals are also included. Case studies on Eastern Beaufort Sea beluga (Delphinapterus leucas) and landlocked Arctic char (Salvelinus alpinus) are presented as examples of the relationship between ecosystem trophic processes and biologic Hg levels. We examine whether atmospheric mercury depletion events (AMDEs) contribute to increased Hg levels in Arctic biota and provide information on the links between organic carbon and Hg speciation, dynamics and bioavailability. Long-term sequestration of Hg into non-biological archives is also addressed. The review concludes by identifying major knowledge gaps in our understanding, including: (1) the rates of Hg entry into marine and terrestrial ecosystems and the rates of inorganic and MeHg uptake by Arctic microbial and algal communities; (2) the bioavailable fraction of AMDE-related Hg and its rate of accumulation by biota and (3) the fresh water and marine MeHg cycle in the Arctic, especially the marine MeHg cycle.

Additional keywords: bioavailability, biomagnification, demethylation, fresh water ecosystems, methylation, trophic processes.


References

[1]  R. P. Mason, K. R. Rolfhus, W. F. Fitzgerald, Mercury in the North Atlantic. Mar. Chem. 1998, 61, 37.
Mercury in the North Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjslKqsrg%3D&md5=346e187fa13566d1bb9371639d96276eCAS |

[2]  W. F. Fitzgerald, C. H. Lamborg, C. R. Hammerschmidt, Marine biogeochemical cycling of mercury. Chem. Rev. 2007, 107, 641.
Marine biogeochemical cycling of mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Sqsr0%3D&md5=cdf1f7de0abe119731f66a13c957227bCAS |

[3]  S. A. Strode, L. Jaeglé, N. E. Selin, D. J. Jacob, R. J. Park, R. M. Yantosca, R. P. Mason, F. Slemr, Air-sea exchange in the global mercury cycle. Global Biogeochem. Cycles 2007, 21, GB1017.
Air-sea exchange in the global mercury cycle.Crossref | GoogleScholarGoogle Scholar |

[4]  R. W. Macdonald, L. L. Loseto, Are Arctic Ocean ecosystems exceptionally vulnerable to global emissions of mercury? A call for emphasised research on methylation and the consequences of climate change. Environ. Chem. 2010, 7, 133.
Are Arctic Ocean ecosystems exceptionally vulnerable to global emissions of mercury? A call for emphasised research on methylation and the consequences of climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFeltb8%3D&md5=1b2c1c2cbe126d98ca93c67469baef04CAS |

[5]  T. A. Douglas, M. Sturm, W. Simpson, J. Blum, L. Alvarez-Aviles, G. Keeler, D. Perovich, A. Biswas, K. Johnson, The influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic. Environ. Sci. Technol. 2008, 42, 1542.
The influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1emtb4%3D&md5=f4e4022da2a709beb7c39d0bdc5c457bCAS |

[6]  T. A. Douglas, M. Amyot, T. Barkay, T. Berg, J. Chetelat, P. Constant, A. Dommergue, M. Evans, C. Ferrari, N. Gantner, M. Johnson, J. Kirk, N. Kroer, C. Larose, D. Lean, L. Loseto, R. Macdonald, D. Muir, T. G. Nielsen, P. Outridge, A. Poulain, L. Poissant, S. Rognerud, H. Skov, S. Sorensen, F. Wang, C. Zdanowicz, Chapter 3. What is the Fate of Mercury Entering the Arctic Environment?, in AMAP Assessment 2011. Mercury in the Arctic 2011, pp. 45–65 (Arctic Monitoring and Assessment Programme: Oslo, Norway).

[7]  L. S. Sherman, J. D. Blum, K. P. Johnson, G. P. Keeler, J. A. Barres, T. A. Douglas, Mass-independent fractionation of mercury isotopes during atmospheric mercury depletion events. Nat. Geosci. 2010, 3, 173.
Mass-independent fractionation of mercury isotopes during atmospheric mercury depletion events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVahurg%3D&md5=9094574b0ca8ad424a22f3c343b75f74CAS |

[8]  I. G. Rigor, J. M. Wallace, Variations in the age of Arctic sea ice and summer sea ice extent. Geophys. Res. Lett. 2004, 31, L09401.
Variations in the age of Arctic sea ice and summer sea ice extent.Crossref | GoogleScholarGoogle Scholar |

[9]  S. V. Nghiem, Y. Chao, G. Neumann, P. Li, D. K. Perovich, T. Street, P. Clemente-Colon, Depletion of perennial sea ice in the eastern Arctic Ocean. Geophys. Res. Lett. 2006, 33, L17501.
Depletion of perennial sea ice in the eastern Arctic Ocean.Crossref | GoogleScholarGoogle Scholar |

[10]  J. A. Maslanik, C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, W. Emery, A younger, thinner Arctic ice cover: increased potenial for rapid, extensive sea-ice loss. Geophys. Res. Lett. 2007, 34, L24501.
A younger, thinner Arctic ice cover: increased potenial for rapid, extensive sea-ice loss.Crossref | GoogleScholarGoogle Scholar |

[11]  P. B. Shepson, P. B. Ariya, C. Deal, D. J. Donaldson, T. A. Douglas, T. Maksym, P. A. Matrai, L. M. Russell, B. Saenz, J. Stefels, N. Steiner, OASIS: bringing scientists together from multiple disciplines to study changes and feedbacks in the polar environments. Eos Trans. AGU 2012, 93, 117.
OASIS: bringing scientists together from multiple disciplines to study changes and feedbacks in the polar environments.Crossref | GoogleScholarGoogle Scholar |

[12]  R. M. Holmes, J. W. McClelland, B. J. Peterson, S. E. Tank, E. Bulygina, T. I. Eglinton, V. V. Gordeev, T. Y. Gurtovaya, P. A. Raymond, D. J. Repeta, R. Staples, R. G. Striegl, A. V. Zhulidov, S. A. Zimov, Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 2012, 35, 369.
Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVWhsLo%3D&md5=9e941c4cf933e62fcef92ceb81282409CAS |

[13]  M. T. Jorgenson, Y. L. Shur, E. R. Pullman, Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 2006, 33, L02503.
Abrupt increase in permafrost degradation in Arctic Alaska.Crossref | GoogleScholarGoogle Scholar |

[14]  E. C. Carmack, R. W. Macdonald, Oceanography of the Canadian Shelf of the Beaufort Sea: a setting for marine life. Arctic 2002, 55, 29.

[15]  A. J. Poulain, E. Garcia, M. Amyot, P. G. C. Campbell, P. A. Ariya, Mercury distribution, partitioning and speciation in coastal vs. inland High Arctic snow. Geochim. Cosmochim. Acta 2007, 71, 3419.
Mercury distribution, partitioning and speciation in coastal vs. inland High Arctic snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVSrtLk%3D&md5=1b546bf8507ce9b2ad854bc4918b055fCAS |

[16]  P. Constant, L. Poissant, R. Villemur, E. Yumvihoze, D. Lean, Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra on the shore of Hudson Bay (Québec, Canada). J. Geophys. Res. 2007, 112, D08309.
Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra on the shore of Hudson Bay (Québec, Canada).Crossref | GoogleScholarGoogle Scholar |

[17]  C. Larose, A. Dommergue, M. DeAngelis, D. Cossa, B. Averty, N. Marusczak, N. Soumis, N. Schneider, D. Schneider, C. Ferrari, Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic. Geochim. Cosmochim. Acta 2010, 74, 6263.
Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12gt7fJ&md5=7c6658f8344c2aa8af5fd240813bb97dCAS |

[18]  V. L. St Louis, M. J. Sharp, A. Steffen, A. May, J. Barker, J. L. Kirk, D. J. A. Kelly, S. E. Arnott, B. Keatley, J. P. Smol, Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic. Environ. Sci. Technol. 2005, 39, 2686.
Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVSit7o%3D&md5=76fbd45b02069d6aae1dea2c911e803aCAS |

[19]  V. L. St Louis, H. Hintelmann, J. A. Graydon, J. L. Kirk, J. Barker, B. Dimock, M. J. Sharp, I. Lehnherr, Methylated mercury species in Canadian high arctic marine surface waters and snowpacks. Environ. Sci. Technol. 2007, 41, 6433.
Methylated mercury species in Canadian high arctic marine surface waters and snowpacks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Whtro%3D&md5=acae87dff2807ddf7c330296dfc74abdCAS |

[20]  A. Dommergue, C. Larose, X. Fain, O. Clarisse, D. Foucher, H. Hintelmann, D. Schneider, C. P. Ferrari, Deposition of mercury species in the Ny-Ålesund area (79°N) and their transfer during snowmelt. Environ. Sci. Technol. 2010, 44, 901.
Deposition of mercury species in the Ny-Ålesund area (79°N) and their transfer during snowmelt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOisrjP&md5=946964f76c6a1ec7220764438d3641dfCAS |

[21]  W. F. Fitzgerald, D. R. Engstrom, C. H. Lamborg, C.-M. Tseng, P. H. Balcom, C. R. Hammerschmidt, Modern and historic atmospheric mercury fluxes in northern Alaska: global sources and arctic depletion. Environ. Sci. Technol. 2005, 39, 557.
Modern and historic atmospheric mercury fluxes in northern Alaska: global sources and arctic depletion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrs7vM&md5=4beeb4528e0c4dbf97f7f27915cbf054CAS |

[22]  R. G. Semkin, G. Mierle, R. J. Neureuther, Hydrochemistry and mercury cycling in a High Arctic watershed. Sci. Total Environ. 2005, 342, 199.
Hydrochemistry and mercury cycling in a High Arctic watershed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Knsrg%3D&md5=dc991f295b627b2d0bcb596b3f5d7319CAS |

[23]  D. C. G. Muir, X. Wang, F. Yang, N. Nguyen, T. A. Jackson, M. S. Evans, M. Douglas, G. Köck, S. Lamoureux, R. Pienitz, J. P. Smol, W. F. Vincent, A. Dastoor, Spatial trends and historical deposition of mercury in eastern and northern Canada inferred from lake sediment cores. Environ. Sci. Technol. 2009, 43, 4802.
Spatial trends and historical deposition of mercury in eastern and northern Canada inferred from lake sediment cores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVegsbo%3D&md5=7906f3984009b1b15c6b96a7bb1ac55bCAS |

[24]  A. A. Hare, G. A. Stern, Z. Z. Kuzyk, R. W. Macdonald, S. C. Johannessen, F. Wang, Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. Environ. Sci. Technol. 2010, 44, 5805.
Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wgu74%3D&md5=f9f06cda9115acca5ecea86bb9c613fbCAS |

[25]  J. Sommar, I. Wangberg, T. Berg, K. Gardfelt, J. Munthe, A. Richter, A. Urba, F. Wittrock, W. H. Schroeder, Circumpolar transport and air–surface exchange of atmospheric mercury at Ny-Alesund (79°N), Svalbard, spring 2002. Atmos. Chem. Phys. 2007, 7, 151.
Circumpolar transport and air–surface exchange of atmospheric mercury at Ny-Alesund (79°N), Svalbard, spring 2002.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitl2jsrc%3D&md5=26dd0cfd2a85695618824f9bdb240a0cCAS |

[26]  J. Sommar, M. E. Andersson, H.-W. Jacobi, Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean. Atmos. Chem. Phys. 2010, 10, 5031.
Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12kt7jF&md5=610e430a4853ea93d6753f1bb43f3f57CAS |

[27]  A. L. Soerensen, H. Skov, D. J. Jacob, B. T. Soerensen, M. S. Johnson, Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer. Environ. Sci. Technol. 2010, 44, 7425.
Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWru7%2FI&md5=6a58852847df7e607683fae4d5edc1d9CAS |

[28]  K. Aspmo, C. Temme, T. Berg, C. Ferrari, P.-A. Gauchard, X. Fain, G. Wibetoe, Mercury in the atmosphere, snow and melt water ponds in the North Atlantic Ocean during Arctic summer. Environ. Sci. Technol. 2006, 40, 4083.
Mercury in the atmosphere, snow and melt water ponds in the North Atlantic Ocean during Arctic summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFGlsLs%3D&md5=6ada2078bf6f1a6ddd9c340364cc0962CAS |

[29]  M. E. Andersson, J. Sommar, K. Gårdfeldt, O. Lindqvist, Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean. Mar. Chem. 2008, 110, 190.
Enhanced concentrations of dissolved gaseous mercury in the surface waters of the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFahsrk%3D&md5=c8524a2dda7f54ba133f5ff38b832b91CAS |

[30]  D. Point, J. E. Sonke, R. D. Day, D. G. Roseneau, K. A. Hobson, S. S. Vander Pol, A. J. Moors, R. S. Pugh, O. F. X. Donard, P. R. Becker, Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems. Nat. Geosci. 2011, 4, 188.
Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFart7k%3D&md5=473522307cc0509aa06ce8c4255e8900CAS |

[31]  L. Whalin, E.-H. Kim, R. P. Mason, Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar. Chem. 2007, 107, 278.
Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWntb3F&md5=c72207bf98a0b7d12a36a6d6c650ce98CAS |

[32]  A. J. Poulain, E. Garcia, M. Amyot, P. G. C. Campbell, F. Raofie, P. A. Ariya, Biological and chemical transformations of mercury in fresh and saltwaters of the High Arctic during spring and summer. Environ. Sci. Technol. 2007, 41, 1883.
Biological and chemical transformations of mercury in fresh and saltwaters of the High Arctic during spring and summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1SqtLo%3D&md5=8bf6c9c179d1b5bf875859b68b91019fCAS |

[33]  J. Lalonde, M. Amyot, A. M. L. Kraepiel, F. M. M. Morel, Photooxidation of Hg0 in artificial and natural waters. Environ. Sci. Technol. 2001, 35, 1367.
Photooxidation of Hg0 in artificial and natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1alsrY%3D&md5=50a87b1ed1dcb28816541c6e9f93adf5CAS |

[34]  M. Coquery, D. Cossa, J. M. Martin, The distribution of dissolved and particulate mercury in three Siberian estuaries and adjacent arctic coastal waters. Water Air Soil Pollut. 1995, 80, 653.
The distribution of dissolved and particulate mercury in three Siberian estuaries and adjacent arctic coastal waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVChtbc%3D&md5=3850368f64a429df8733e23383bd7ed2CAS |

[35]  D. R. Leitch, J. Carrie, D. R. S. Lean, R. W. Macdonald, G. A. Stern, F. Wang, The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Sci. Total Environ. 2007, 373, 178.
The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFOnsQ%3D%3D&md5=4685e81bdb0e7d678306ace589050e31CAS |

[36]  P. M. Outridge, R. W. Macdonald, F. Wang, G. A. Stern, A. P. Dastoor, A mass balance inventory of mercury in the Arctic Ocean. Environ. Chem. 2008, 5, 89.
A mass balance inventory of mercury in the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVegt7o%3D&md5=2e16bfac0ffa5f8d67ce73d6e607fa18CAS |

[37]  J. L. Kirk, V. L. St Louis, Multiyear total and methyl mercury exports from two major sub-Arctic rivers draining into Hudson Bay. Environ. Sci. Technol. 2009, 43, 2254.
Multiyear total and methyl mercury exports from two major sub-Arctic rivers draining into Hudson Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlylurw%3D&md5=c70017d2ed7afd0e0a5a61edcfb81e45CAS |

[38]  Y. Gu, B. Bian, C. L. Miller, W. Dong, X. Jiang, L. Liang, Mercury reduction and complexation by natural organic matter in anoxic environments. Proc. Natl. Acad. Sci. USA 2011, 108, 1479.
Mercury reduction and complexation by natural organic matter in anoxic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Smt70%3D&md5=23df88dc7d12ecf1b16680a37144c93dCAS |

[39]  R. W. Macdonald, T. Harner, J. Fyfe, Recent climate change in the Canadian Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci. Total Environ. 2005, 342, 5.
Recent climate change in the Canadian Arctic and its impact on contaminant pathways and interpretation of temporal trend data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Kns7s%3D&md5=b7a4cafcee03bcca9d30c0b6df832ea4CAS |

[40]  R. W. Macdonald, J. M. Bewers, Contaminants in the arctic marine environment: priorities for protection. ICES J. Mar. Sci. 1996, 53, 537.
Contaminants in the arctic marine environment: priorities for protection.Crossref | GoogleScholarGoogle Scholar |

[41]  P. Schlosser, B. Kromer, G. Östlund, B. Ekwurzel, G. Bönisch, H. H. Loosli, R. Furtschert, On the 14C and 39Ar distribution in the central Arctic Ocean: implications for deep water formation. Radiocarbon 1983, 36, 327.

[42]  R. W. Macdonald, E. C. Carmack, D. W. R. Wallace, Tritium and radiocarbon dating of Canada Basin deep waters. Science 1993, 259, 103.
Tritium and radiocarbon dating of Canada Basin deep waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1alsQ%3D%3D&md5=0fa7b3d21443c7a06d71c3f626c5136aCAS |

[43]  R. P. Mason, W. F. Fitzgerald, The distribution and biogeochemical cycling of mercury in the equatorial Pacific. Deep-Sea Res. 1993, 40, 1897.
The distribution and biogeochemical cycling of mercury in the equatorial Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFamsr8%3D&md5=542875e3c3b3e11bda48e883fd2454ebCAS |

[44]  E. M. Sunderland, D. P. Krabbenhoft, J. W. Moreau, S. A. Strode, W. M. Landing, Mercury sources, distribution and bioavailability in the North Pacific Ocean: insights from data and models. Global Biogeochem. Cycles 2009, 23, GB2010.
Mercury sources, distribution and bioavailability in the North Pacific Ocean: insights from data and models.Crossref | GoogleScholarGoogle Scholar |

[45]  E. M. Sunderland, R. P. Mason, Human impacts on open ocean mercury concentrations. Global Biogeochem. Cycles 2007, 21, GB4022.
Human impacts on open ocean mercury concentrations.Crossref | GoogleScholarGoogle Scholar |

[46]  S. Honjo, R. A. Krishfield, T. I. Eglinton, S. J. Manganini, J. N. Kemp, K. Doherty, J. Hwang, T. K. McKee, T. Takizawa, Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise. Prog. Oceanogr. 2010, 85, 137.
Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise.Crossref | GoogleScholarGoogle Scholar |

[47]  M. C. O’Brien, H. Melling, T. F. Pederson, R. W. Macdonald, The role of eddies and energetic ocean phenomena in the transport of sediment from shelf to basin in the Arctic. J. Geophys. Res. 2011, 116, C08001.
The role of eddies and energetic ocean phenomena in the transport of sediment from shelf to basin in the Arctic.Crossref | GoogleScholarGoogle Scholar |

[48]  J. Klaminder, K. Yoo, J. Rydberg, R. Giesler, An explorative study of mercury export from a thawing palsa mire. J. Geophys. Res. 2008, 113, G04034.
An explorative study of mercury export from a thawing palsa mire.Crossref | GoogleScholarGoogle Scholar |

[49]  J. Rydberg, J. Klaminder, P. Rosen, R. Bindler, Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes. Sci. Total Environ. 2010, 408, 4778.
Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtrbE&md5=6306c64ac0dea7fdb192c102963513adCAS |

[50]  C. R. Hammerschmidt, W. F. Fitzgerald, Photodecomposition of methylmercury in arctic Alaskan Lakes. Environ. Sci. Technol. 2006, 40, 1212.
Photodecomposition of methylmercury in arctic Alaskan Lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis12jsw%3D%3D&md5=cb1a9ed06b025b5058760d69adf2df25CAS |

[51]  C. R. Hammerschmidt, W. F. Fitzgerald, C. H. Lamborg, P. H. Balcom, C. M. Tseng, Biogeochemical cycling of methylmercury in lakes and tundra watersheds of Arctic Alaska. Environ. Sci. Technol. 2006, 40, 1204.
Biogeochemical cycling of methylmercury in lakes and tundra watersheds of Arctic Alaska.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xis12jsg%3D%3D&md5=af142069303cb87034e28ec050279b2bCAS |

[52]  M. F. Costa, P. S. Liss, Photoreduction of mercury in seawater and its possible implications for Hg0 air–sea fluxes. Mar. Chem. 1999, 68, 87.
Photoreduction of mercury in seawater and its possible implications for Hg0 air–sea fluxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFWnsQ%3D%3D&md5=ea4c63143e7242bd6a4416b560394a85CAS |

[53]  N. J. O’Driscoll, S. D. Siciliano, D. R. S. Lean, M. Amyot, Gross photo-reduction kinetics of mercury in temperate freshwater lakes and rivers: application to a general model for DGM dynamics. Environ. Sci. Technol. 2006, 40, 873.

[54]  A. K. Møller, T. Barkay, W. A. Al-Soud, S. J. Sørensen, H. Skov, N. Kroer, Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic. FEMS Microbiol. Ecol. 2011, 75, 390.
Diversity and characterization of mercury-resistant bacteria in snow, freshwater and sea-ice brine from the High Arctic.Crossref | GoogleScholarGoogle Scholar |

[55]  M. Amyot, D. Lean, G. Mierle, Photochemical formation of volatile mercury in High Arctic Lakes. Environ. Toxicol. Chem. 1997, 16, 2054.
Photochemical formation of volatile mercury in High Arctic Lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFCjs7g%3D&md5=8ff1ec79e35fe452b54197594b9ffa9bCAS |

[56]  C. M. Tseng, C. Lamborg, W. F. Fitzgerald, D. R. Engstrom, Cycling of dissolved elemental mercury in Arctic Alaskan lakes. Geochim. Cosmochim. Acta 2004, 68, 1173.
Cycling of dissolved elemental mercury in Arctic Alaskan lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVGhsLY%3D&md5=09b2cf8113ae368a5999b7b56f836ca4CAS |

[57]  G. M. Vandal, R. P. Mason, W. F. Fitzgerald, Cycling of volatile mercury in temperate lakes. Water Air Soil Pollut. 1991, 56, 791.
Cycling of volatile mercury in temperate lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmvVKltLc%3D&md5=1fa82332308ea9c60691395d7b954f39CAS |

[58]  R. P. Mason, F. M. M. Morel, H. F. Hemond, The role of microorganisms in elemental mercury formation in natural waters. Water Air Soil Pollut. 1995, 80, 775.
The role of microorganisms in elemental mercury formation in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVChu74%3D&md5=2e698df83a5f5131f73e0e074837703cCAS |

[59]  A. J. Poulain, M. Amyot, D. Findlay, S. Telor, T. Barkay, H. Hintelman, Biological and photochemical production of dissolved gaseous mercury in a boreal lake. Limnol. Oceanogr. 2004, 49, 2265.
Biological and photochemical production of dissolved gaseous mercury in a boreal lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWqtLfJ&md5=23af118ad9a2958e5ef7c4f2f9d29735CAS |

[60]  A. J. Poulain, S. M. Ni Chadhain, P. A. Ariya, M. Amyot, E. Garcia, P. G. C. Campbell, G. Zylstra, T. Barkay, Potential for mercury reduction by microbes in the high Arctic. Appl. Environ. Microbiol. 2007, 73, 2230.
Potential for mercury reduction by microbes in the high Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1KqtLY%3D&md5=88ffe909829cdcd994b2f09e55776e34CAS |

[61]  P. M. Outridge, G. A. Stern, P. B. Hamilton, J. B. Percival, R. McNeely, W. L. Lockhart, Trace metal profiles in the varved sediment of an Arctic lake. Geochim. Cosmochim. Acta 2005, 69, 4881.
Trace metal profiles in the varved sediment of an Arctic lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOgs73K&md5=7b0a46c00c39c5fd3539736974a3d569CAS |

[62]  P. M. Outridge, H. Sanei, G. A. Stern, P. B. Hamilton, F. Goodarzi, Evidence for control of mercury accumulation rates in Canadian High Arctic sediments by variations of aquatic primary productivity. Environ. Sci. Technol. 2007, 41, 5259.
Evidence for control of mercury accumulation rates in Canadian High Arctic sediments by variations of aquatic primary productivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFeisrY%3D&md5=df2a6def6e8a3834c4a1302fbb4881faCAS |

[63]  H. E. Welch, J. Kalff, Benthic photosynthesis and respiration in Char Lake. J. Fish. Res. Board Can. 1974, 31, 609.
Benthic photosynthesis and respiration in Char Lake.Crossref | GoogleScholarGoogle Scholar |

[64]  S. Markager, W. F. Vincent, E. P. Y. Tang, Carbon fixation by phytoplankton in high Arctic lakes: implications of low temperature for photosynthesis. Limnol. Oceanogr. 1999, 44, 597.
Carbon fixation by phytoplankton in high Arctic lakes: implications of low temperature for photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1yjsrc%3D&md5=f678a22c0b6b4adde50d4bee795ea8a4CAS |

[65]  G. A. Stern, H. Sanei, P. Roach, J. Delaronde, P. M. Outridge, Historical interrelated variations of mercury and aquatic organic matter in lake sediment cores from a subarctic lake in Yukon, Canada: further evidence toward the algal-mercury scavenging hypothesis. Environ. Sci. Technol. 2009, 43, 7684.
Historical interrelated variations of mercury and aquatic organic matter in lake sediment cores from a subarctic lake in Yukon, Canada: further evidence toward the algal-mercury scavenging hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGiu7rM&md5=0d34d56c9827684f33f66b6ab92ed544CAS |

[66]  J. Carrie, G. A. Stern, H. Sanei, R. W. Macdonald, P. M. Outridge, F. Wang, Increasing contaminant burdens in an Arctic fish, burbot (Lota lota), in a warming climate. Environ. Sci. Technol. 2010, 44, 316.
Increasing contaminant burdens in an Arctic fish, burbot (Lota lota), in a warming climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSrtr7O&md5=5db2b31c1bfc235b1151ba2b5894c9d9CAS |

[67]  W. F. Fitzgerald, C. H. Lamborg, Geochemistry of mercury in the environment, in Treatise on Geochemistry Volume 9: Environmental Chemistry (Eds B. S. Lollar, H. D. Holland, K. K. Turekian) 2004, pp. 107–148 (Elsevier–Pergamon: Oxford, UK).

[68]  J. Chételat, M. Amyot, L. Cloutier, A. Poulain, Metamorphosis in chironomids, more than mercury supply, controls methylmercury transfer to fish in High Arctic lakes. Environ. Sci. Technol. 2008, 42, 9110.
Metamorphosis in chironomids, more than mercury supply, controls methylmercury transfer to fish in High Arctic lakes.Crossref | GoogleScholarGoogle Scholar |

[69]  F. M. M. Morel, A. M. L. Kraepiel, M. Amyot, The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Syst. 1998, 29, 543.
The chemical cycle and bioaccumulation of mercury.Crossref | GoogleScholarGoogle Scholar |

[70]  M. K. Woo, Hydrology of a drainage basin in the Canadian High Arctic. Ann. Assoc. Am. Geogr. 1983, 73, 577.
Hydrology of a drainage basin in the Canadian High Arctic.Crossref | GoogleScholarGoogle Scholar |

[71]  J. P. McNamara, D. L. Kane, L. D. Hinzman, An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska: a nested watershed approach. J. Hydrol. 1998, 206, 39.
An analysis of streamflow hydrology in the Kuparuk River Basin, Arctic Alaska: a nested watershed approach.Crossref | GoogleScholarGoogle Scholar |

[72]  M. Tranter, P. Brimblecombe, T. D. Davies, C. E. Vincent, P. W. Abrahams, I. Blackwood, The composition of snowfall, snowpack and meltwater in the Scottish Highlands – evidence for preferential elution. Atmos. Environ. 1986, 20, 517.
The composition of snowfall, snowpack and meltwater in the Scottish Highlands – evidence for preferential elution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitFaqt7s%3D&md5=e841b8fa55e51cbf4e1a0e6ceb8f8855CAS |

[73]  R. C. Bales, R. E. Davis, D. A. Stanley, Ion elution through shallow homogeneous snow. Water Resour. Res. 1989, 25, 1869.
Ion elution through shallow homogeneous snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXotlOqsA%3D%3D&md5=f96e30414a8a05dd8518128eb85afa85CAS |

[74]  M. W. Williams, J. M. Melack, Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada. Water Resour. Res. 1991, 27, 1575.
Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtl2js7c%3D&md5=532d8ba14b06bdd0b6d216c298d272e8CAS |

[75]  R. Harrington, R. C. Bales, Interannual, seasonal, and spatial patterns of meltwater and solute fluxes in a seasonal snowpack. Water Resour. Res. 1998, 34, 823.
Interannual, seasonal, and spatial patterns of meltwater and solute fluxes in a seasonal snowpack.Crossref | GoogleScholarGoogle Scholar |

[76]  P. F. Schuster, J. B. Shanley, M. Marvin-Dipasquale, M. M. Reddy, G. R. Aiken, D. A. Roth, H. E. Taylor, D. P. Krabbenhoft, J. F. DeWild, Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water Air Soil Pollut. 2008, 187, 89.[Published online early 12 October 2007].
Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVejs7Y%3D&md5=1c287615c34f77dcc096d0732ca19f3eCAS |

[77]  L. L. Loseto, D. S. Lean, S. D. Siciliano, Snowmelt sources of methylmercury to High Arctic ecosystems. Environ. Sci. Technol. 2004, 38, 3004.
Snowmelt sources of methylmercury to High Arctic ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsF2qtb0%3D&md5=11b35aedffef6cd70308a34477e8b9ccCAS |

[78]  T. Berg, S. Sekkesæter, E. Steinnes, A. Valdal, G. Wibetoe, Springtime depletion of mercury in the European Arctic as observed at Svalbard. Sci. Total Environ. 2003, 304, 43.
Springtime depletion of mercury in the European Arctic as observed at Svalbard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit12isLk%3D&md5=7d686942da06584fd6f793134dd9ce34CAS |

[79]  A. Dommergue, C. P. Ferrari, P.-A. Gauchard, C. F. Boutron, L. Poissant, M. Pilote, P. Jitaru, F. C. Adams, The fate of mercury species in a sub-arctic snowpack during snowmelt. Geophys. Res. Lett. 2003, 30, 1621.
The fate of mercury species in a sub-arctic snowpack during snowmelt.Crossref | GoogleScholarGoogle Scholar |

[80]  A. O. Steen, K. Aspmo, T. Berg, A. P. Dastoor, D. A. Durnford, L. R. Hole, Dynamic exchange of gaseous elemental mercury during polar night and day in Ny-Ålesund. Atmos. Environ. 2009, 43, 5604.
Dynamic exchange of gaseous elemental mercury during polar night and day in Ny-Ålesund.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Cgu7%2FF&md5=79993509cad07d4cf87f3436aceb44a0CAS |

[81]  A. Dommergue, C. P. Ferrari, L. Poissant, P. A. Gauchard, C. F. Boutron, Diurnal cycles of gaseous mercury within the snowpack at Kuujjuarapik/Whapmagoostui, Quebec, Canada. Environ. Sci. Technol. 2003, 37, 3289.
Diurnal cycles of gaseous mercury within the snowpack at Kuujjuarapik/Whapmagoostui, Quebec, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslymt7c%3D&md5=f6c05ab8673ab6089acf81a24d6ea29cCAS |

[82]  A. Steffen, T. A. Douglas, M. Amyot, P. Ariya, K. Aspmo, T. Berg, J. Bottenheim, S. Brooks, F. Cobbett, A. Dastoor, A. Dommergue, R. Ebinghaus, C. Ferrari, K. Gårdfeldt, M. E. Goodsite, D. Lean, A. Poulain, C. Scherz, H. Skov, J. Sommar, C. Temme, A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water. Atmos. Chem. Phys. Discuss. 2007, 7, 10 837.
A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water.Crossref | GoogleScholarGoogle Scholar |

[83]  E. J. Carpenter, S. Lin, D. G. Capone, Bacterial activity in South Pole snow. Appl. Environ. Microbiol. 2000, 66, 4514.
Bacterial activity in South Pole snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Clsro%3D&md5=4e14815caa9d1cf31f5158ebabfc5731CAS |

[84]  P. Amato, R. Hennebelle, O. Magnand, M. Sancelme, A.-M. Delort, C. Barbante, C. Boutron, C. Ferrari, Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol. Ecol. 2007, 59, 255.
Bacterial characterization of the snow cover at Spitzberg, Svalbard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslGrsr0%3D&md5=340374821075af9b06e88d15bfae696fCAS |

[85]  K. Junge, H. Eicken, B. D. Swanson, J. W. Deming, Bacterial incorporation of leucine into protein down to –20 °C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 2006, 52, 417.
Bacterial incorporation of leucine into protein down to –20 °C with evidence for potential activity in sub-eutectic saline ice formations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xks1Wks7Y%3D&md5=1a93b8384b3c592250806c7b7de2e450CAS |

[86]  D. Cossa, B. Averty, N. Pirrone, The origin of methylmercury in open Mediterranean waters. Limnol. Oceanogr. 2009, 54, 837.
The origin of methylmercury in open Mediterranean waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrtrnO&md5=6d76b986bcba6741b37f576fb633e1b7CAS |

[87]  D. Cossa, L.-E. Heimburger, D. Lannuzel, S. R. Rintoul, C. V. Butler, A. R. Bowie, B. Averty, R. J. Watson, T. Remenyi, Mercury in the Southern Ocean. Geochim. Cosmochim. Acta 2011, 75, 4037.
Mercury in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Cnu7g%3D&md5=e9a33d558e37baa1158182809057efccCAS |

[88]  T. Barkay, S. M. Miller, A. O. Summers, Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 2003, 27, 355.
Bacterial mercury resistance from atoms to ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOlt7c%3D&md5=ef951e248ccfa24ad5ab766cd43042dbCAS |

[89]  D. Ben-Bassat, A. M. Mayer, Light-induced Hg volatilization and O2 evolution in Chlorella and the effect of DCMU and methylamine. Physiol. Plant. 1978, 42, 33.
Light-induced Hg volatilization and O2 evolution in Chlorella and the effect of DCMU and methylamine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtVWktr0%3D&md5=bd1dbb1d8e3b655a0bedf3d9585b5404CAS |

[90]  M. Stibal, J. Elster, Growth and morphology variation as a response to changing environmental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil. Polar Biol. 2005, 28, 558.
Growth and morphology variation as a response to changing environmental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil.Crossref | GoogleScholarGoogle Scholar |

[91]  L. L. Loseto, S. D. Siciliano, D. R. S. Lean, Methyl mercury production in High Arctic wetlands. Environ. Toxicol. Chem. 2004, 23, 17.
Methyl mercury production in High Arctic wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKntA%3D%3D&md5=6564d3354bd8d98a3548253d2ea71a3dCAS |

[92]  J. D. Lalonde, A. J. Poulain, M. Amyot, The role of mercury redox reactions in snow on snow–to–air mercury transfer. Environ. Sci. Technol. 2002, 36, 174.
The role of mercury redox reactions in snow on snow–to–air mercury transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovV2gtb4%3D&md5=851e2c1bff5686888dd2b30f5f97fb33CAS |

[93]  J. D. Lalonde, M. Amyot, M.-R. Doyon, J.-C. Auclair, Photoinduced HgII reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada). J. Geophys. Res. 2003, 108(D6), 4200.
Photoinduced HgII reduction in snow from the remote and temperate Experimental Lakes Area (Ontario, Canada).Crossref | GoogleScholarGoogle Scholar |

[94]  E. Garcia, M. Amyot, P. Ariya, Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands. Geochim. Cosmochim. Acta 2005, 69, 1917.
Relationship between DOC photochemistry and mercury redox transformations in temperate lakes and wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFant70%3D&md5=ecd81f37415148aa9f2cc8fa1a5e17f9CAS |

[95]  E. B. Ekstrom, F. M. M. Morel, J. M. Benoit, Mercury methylation independent of the acetyl-coenzyme: a pathway in sulfate-reducingbacteria. Appl. Environ. Microbiol. 2003, 69, 5414.
Mercury methylation independent of the acetyl-coenzyme: a pathway in sulfate-reducingbacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlSju7g%3D&md5=24d7e05cd51dd090a0aaf78f1e4d868eCAS |

[96]  L. Lambertsson, M. Nilsson, Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments. Environ. Sci. Technol. 2006, 40, 1822.
Organic material: the primary control on mercury methylation and ambient methyl mercury concentrations in estuarine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlertrY%3D&md5=b4bf6231f5b5d0ad47c165f4857ba50aCAS |

[97]  W. Dong, L. Liang, S. Brooks, G. Southworth, B. Gu, Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee. Environ. Chem. 2010, 7, 94.
Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12jtLc%3D&md5=07fd655ec06c96f879d1057b3b3293a3CAS |

[98]  L.-E. Heimbürger, D. Cossa, J.-C. Marty, C. Migon, B. Averty, A. Dufour, J. Ras, Methyl mercury distributions in relation to the presence of nano and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean). Geochim. Cosmochim. Acta 2010, 74, 5549.
Methyl mercury distributions in relation to the presence of nano and picophytoplankton in an oceanic water column (Ligurian Sea, North-western Mediterranean).Crossref | GoogleScholarGoogle Scholar |

[99]  I. Lehnherr, V. L. St Louis, H. Hintelmann, J. L. Kirk, Methylation of inorganic mercury in polar marine waters. Nat. Geosci. 2011, 4, 298.
Methylation of inorganic mercury in polar marine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlyrs7Y%3D&md5=aec4d60475e680d1aa31918003c8d8b0CAS |

[100]  D. Wang, S. M. Henrichs, L. Guo, Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean. Cont. Shelf Res. 2006, 26, 1654.
Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean.Crossref | GoogleScholarGoogle Scholar |

[101]  J. L. Kirk, V. L. St Louis, H. Hintelmann, I. Lehnherr, B. Else, L. Poissant, Methylated mercury species in marine waters of the Canadian High and sub-Arctic. Environ. Sci. Technol. 2008, 42, 8367.
Methylated mercury species in marine waters of the Canadian High and sub-Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ohs7rF&md5=11707f694005d1fc0da45e76d3b16d12CAS |

[102]  AMAP, Arctic Monitoring and Assessment Programme Assessment 2009: Human Health in the Arctic 2009 (Arctic Monitoring and Assessment Programme: Oslo, Norway).

[103]  C. H. Lamborg, W. F. Fitzgerald, J. O’Donnell, J. T. Torgerson, A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric gradients. Geochim. Cosmochim. Acta 2002, 66, 1105.
A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric gradients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWhsrw%3D&md5=de8c01e6ca892dbf3b32e5cae043c6bcCAS |

[104]  F. J. G. Laurier, R. P. Mason, G. A. Gill, L. Whalin, Mercury distributions in the North Pacific Ocean – 20 years of observations. Mar. Chem. 2004, 90, 3.
Mercury distributions in the North Pacific Ocean – 20 years of observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptFShsLw%3D&md5=d2cd2f2917135af465a861421b8c9f16CAS |

[105]  R. P. Mason, N. M. Lawson, G.-R. Sheu, Mercury in the Atlantic Ocean: factors controlling air–sea exchange of mercury and its distribution in the upper waters. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 2829.
Mercury in the Atlantic Ocean: factors controlling air–sea exchange of mercury and its distribution in the upper waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFWgsLs%3D&md5=6482abd5c7f7b2a2b3eaff3e257df407CAS |

[106]  R. P. Mason, K. R. Rolfus, W. F. Fitzgerald, Methylated and elemental mercury cycling in surface and deep ocean waters of the North Atlantic. Water Air Soil Pollut. 1995, 80, 665.
Methylated and elemental mercury cycling in surface and deep ocean waters of the North Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVChur4%3D&md5=5339b616c8e65f9d4287a0cc4c538f5eCAS |

[107]  A. L. Soerensen, E. M. Sunderland, C. D. Holmes, D. J. Jacob, R. Yantosca, H. Skov, J. Christensen, S. A. Strode, R. P. Mason, A global simulation of mercury air–sea exchange for evaluating impacts on marine boundary layer concentrations. Environ. Sci. Technol. 2010, 44, 8574.
A global simulation of mercury air–sea exchange for evaluating impacts on marine boundary layer concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlansLjL&md5=e9b2db1473c64fa5156d695446fb6476CAS |

[108]  M. A. Granskog, R. W. Macdonald, C. J. Mundy, D. G. Barber, Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in the Hudson Strait and the Hudson Bay. Cont. Shelf Res. 2007, 27, 2032.
Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in the Hudson Strait and the Hudson Bay.Crossref | GoogleScholarGoogle Scholar |

[109]  H. T. Nguyen, K.-H. Kim, Z.-H. Shon, S. Hong, A review of atmospheric mercury in the polar environment. Crit. Rev. Environ. Sci. Technol. 2009, 39, 552.
A review of atmospheric mercury in the polar environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlyhtbo%3D&md5=b759364921c5d8f65982a55802ad75d8CAS |

[110]  J. L. Guentzel, R. T. Powell, W. M. Landing, R. P. Mason, Mercury associated with colloidal material in an estuarine and an open-ocean environment. Mar. Chem. 1996, 55, 177.
Mercury associated with colloidal material in an estuarine and an open-ocean environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFemu7Y%3D&md5=07f565f3dd44a41200b9b506d323cd79CAS |

[111]  R. P. Mason, K. A. Sullivan, The distribution and speciation of mercury in the South and equatorial Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 1999, 46, 937.
The distribution and speciation of mercury in the South and equatorial Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVSrsrw%3D&md5=61483689d23a1120ead9a6fe1b45e894CAS |

[112]  A. D. McGuire, L. G. Anderson, T. R. Christensen, S. Dallimore, L. Guo, D. J. Hayes, M. Heimann, T. D. Lorenson, R. W. Macdonald, N. Roulet, Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 2009, 79, 523.
Sensitivity of the carbon cycle in the Arctic to climate change.Crossref | GoogleScholarGoogle Scholar |

[113]  J. A. Graydon, C. A. Emmerton, L. F. W. Lesack, E. N. Kelly, Mercury in the Mackenzie River delta and estuary: concentrations and fluxes during open-water conditions. Sci. Total Environ. 2009, 407, 2980.
Mercury in the Mackenzie River delta and estuary: concentrations and fluxes during open-water conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVegtrk%3D&md5=84f4dc8eba6a1762c124836a2c88191fCAS |

[114]  M. C. O’Brien, R. W. Macdonald, H. Melling, K. Iseki, K., Geochemistry and physical forcing of sediment transport and deposition in the Canadian Beaufort Sea. Cont. Shelf Res. 2006, 26, 41.

[115]  C. H. Conaway, F. J. Black, M. Gault-Ringold, J. T. Pennington, F. P. Chavez, A. R. Flegal, Dimethylmercury in coastal upwelling waters, Monterey Bay, California. Environ. Sci. Technol. 2009, 43, 1305.
Dimethylmercury in coastal upwelling waters, Monterey Bay, California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrs78%3D&md5=5a166b091f70cddde51817d11dc38eb6CAS |

[116]  G. A. Stern, R. W. Macdonald, Biogeographic provinces of total and methyl mercury in zooplankton and fish from the Beaufort and Chukchi Seas: results from the SHEBA drift. Environ. Sci. Technol. 2005, 39, 4707.
Biogeographic provinces of total and methyl mercury in zooplankton and fish from the Beaufort and Chukchi Seas: results from the SHEBA drift.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Kru74%3D&md5=8cf06c4ba193a8025beea8c8a08c11d6CAS |

[117]  C. Gobeil, R. W. Macdonald, B. Sundby, Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim. Cosmochim. Acta 1997, 61, 4647.
Diagenetic separation of cadmium and manganese in suboxic continental margin sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVOi&md5=ca0199488c7f1bb0749a1ae22346420dCAS |

[118]  C. Gobeil, B. Sundby, R. W. Macdonald, J. N. Smith, Recent change in organic carbon flux to Arctic Ocean deep basins: evidence from acid volatile sulfide, manganese and rhenium discord in sediments. Geophys. Res. Lett. 2001, 28, 1743.
Recent change in organic carbon flux to Arctic Ocean deep basins: evidence from acid volatile sulfide, manganese and rhenium discord in sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1Onsrc%3D&md5=7d2c2d72e4a8d375bdd7de69e847b118CAS |

[119]  R. P. Mason, J. R. Reinfelder, F. M. M. Morel, Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol. 1996, 30, 1835.
Uptake, toxicity, and trophic transfer of mercury in a coastal diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFansL4%3D&md5=9a83d8532e31d7aca305f8c4fab17aa7CAS |

[120]  C. J. Watras, R. C. Back, S. Halvorsen, R. J. M. Hudson, K. A. Morrison, S. P. Wente, Bioaccumulation of mercury in pelagic freshwater food webs. Sci. Total Environ. 1998, 219, 183.
Bioaccumulation of mercury in pelagic freshwater food webs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrk%3D&md5=c4634ce062f9f4830f989dec8e9db321CAS |

[121]  N. M. Lawson, R. P. Mason, Accumulation of mercury in estuarine food chains. Biogeochem. 1998, 40, 235.
Accumulation of mercury in estuarine food chains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlakurc%3D&md5=509800e64494ad4ffd64dd7a114b1a83CAS |

[122]  P. C. Pickhardt, N. S. Fisher, Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ. Sci. Technol. 2007, 41, 125.
Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCit7nN&md5=54604fc61262a0aa6ee35f847c3cad16CAS |

[123]  P. R. Gorski, D. E. Armstrong, J. P. Hurley, D. P. Krabbenhoft, Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga. Environ. Pollut. 2008, 154, 116.
Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFelsLs%3D&md5=0ad65c25285c4058fc12875a1fddc126CAS |

[124]  H. Zhong, W.-X. Wang, Controls of dissolved organic matter and chloride on mercury uptake by a marine diatom. Environ. Sci. Technol. 2009, 43, 8998.
Controls of dissolved organic matter and chloride on mercury uptake by a marine diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt7rK&md5=bb06517abc9513c476ece56dc1ccb7d4CAS |

[125]  M. A. Goñi, M. B. Yunker, R. W. Macdonald, T. I. Eglinton, The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean. Mar. Chem. 2005, 93, 53.
The supply and preservation of ancient and modern components of organic carbon in the Canadian Beaufort Shelf of the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar |

[126]  L. Guo, R. W. Macdonald, Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Global Biogeochem. Cycles 2006, 20, GB2011.
Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases.Crossref | GoogleScholarGoogle Scholar |

[127]  L. Guo, C.-L. Ping, R. W. Macdonald, Mobilization pathways of organic carbon from permafrost to Arctic rivers in a changing climate. Geophys. Res. Lett. 2007, 34, L13603.
Mobilization pathways of organic carbon from permafrost to Arctic rivers in a changing climate.Crossref | GoogleScholarGoogle Scholar |

[128]  Z. Z. A. Kuzyk, M. A. Goni, G. A. Stern, R. W. Macdonald, Sources, pathways and sinks of particulate organic matter in Hudson Bay: evidence from lignin distributions. Mar. Chem. 2008, 112, 215.
Sources, pathways and sinks of particulate organic matter in Hudson Bay: evidence from lignin distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVentLfM&md5=aad554343fc42dd8292882c5cbfff308CAS |

[129]  K. Fu, P. Kawamura, J. Chen, L. A. Barrie, Isoprene, monoterpene, and sesquiterpene oxidation products in the High Arctic aerosols during late winter to early summer. Environ. Sci. Technol. 2009, 43, 4022.
Isoprene, monoterpene, and sesquiterpene oxidation products in the High Arctic aerosols during late winter to early summer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlKltbo%3D&md5=d0e9e31fcfbfeef79b89aa585792f204CAS |

[130]  H. Sanei, F. Goodarzi, Relationship between organic matter and mercury in recent lake sediment: the physical–geochemical aspects. Appl. Geochem. 2006, 21, 1900.
Relationship between organic matter and mercury in recent lake sediment: the physical–geochemical aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFequ7rJ&md5=20aab31e17c1a28c7312ad1a52eb7cb2CAS |

[131]  R. Bargagli, F. Monaci, C. Bucci, Environmental biogeochemistry of mercury in Antarctic ecosystems. Soil Biol. Biochem. 2007, 39, 352.
Environmental biogeochemistry of mercury in Antarctic ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1agtr3O&md5=52e38aafebad630f60a61d8f4f5412a8CAS |

[132]  J. M. Benoit, C. C. Gilmour, R. P. Mason, A. Heyes, Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ. Sci. Technol. 1999, 33, 951.
Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlajtg%3D%3D&md5=c35e549e4c8185ca0749ecca9f7f9339CAS |

[133]  G. R. Golding, C. A. Kelly, R. Sparling, P. C. Loewen, J. W. M. Rudd, T. Barkay, Evidence for facilitated uptake of HgII by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions. Limnol. Oceanogr. 2002, 47, 967.
Evidence for facilitated uptake of HgII by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions.Crossref | GoogleScholarGoogle Scholar |

[134]  J. K. Schaefer, F. M. M. Morel, High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat. Geosci. 2009, 2, 123.
High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1amt7k%3D&md5=c52d89152f7471d90233a826d18abad8CAS |

[135]  J. K. Schaefer, S. S. Rocks, W. Zheng, L. Liang, B. Gu, F. M. M. Morel, Active transport, substrate specificity, and methylation of HgII in anaerobic bacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 8714.
Active transport, substrate specificity, and methylation of HgII in anaerobic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVGqurk%3D&md5=a9a608fd043011cdd83db5dc94173cf1CAS |

[136]  C. J. Watras, N. S. Bloom, Mercury and methylmercury individual zooplankton-implications for bioaccumulation. Limnol. Oceanogr. 1992, 37, 1313.
Mercury and methylmercury individual zooplankton-implications for bioaccumulation.Crossref | GoogleScholarGoogle Scholar |

[137]  W. Baeyens, M. Leermakers, T. Papina, A. Saprykin, N. Brion, J. Noyen, M. De Gieter, L. Goeyens, Bioconcentration and biomagnification of mercury and methylmercury in North Sea and Scheldt Estuary fish. Arch. Environ. Contam. Toxicol. 2003, 45, 498.
Bioconcentration and biomagnification of mercury and methylmercury in North Sea and Scheldt Estuary fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFKhtrg%3D&md5=0503af95542b4238d5811070d6244915CAS |

[138]  B. A. Methe, K. E. Nelson, J. W. Deming, B. Momen, E. Melamud, X. J. Zhang, J. Moult, R. Madupu, W. C. Nelson, R. J. Dodson, L. M. Brinkac, S. C. Daugherty, A. S. Durkin, R. T. DeBoy, J. F. Kolonay, S. A. Sullivan, L. W. Zhou, T. M. Davidsen, M. Wu, A. L. Huston, M. Lewis, B. Weaver, J. F. Weidman, H. Khouri, T. R. Utterback, T. V. Feldblyum, C. M. Fraser, The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 2005, 102, 10 913.
The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVWjtL0%3D&md5=45c02eca5a935ecffe681c1084b48e6cCAS |

[139]  T. Barkay, A. J. Poulain, Mercury (micro)biogeochemistry in polar environments. FEMS Microbiol. Ecol. 2007, 59, 232.
Mercury (micro)biogeochemistry in polar environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslGrsr8%3D&md5=59f36706a7841d310e648d8d148b376eCAS |

[140]  C. C. Gilmour, E. A. Henry, R. Mitchell, Sulfate stimulation of mercury methylation in freshwater sediments. Environ. Sci. Technol. 1992, 26, 2281.
Sulfate stimulation of mercury methylation in freshwater sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslOrurs%3D&md5=4a9fb1f208730ec31e0d6f8a29012730CAS |

[141]  E. J. Fleming, E. E. Mack, P. G. Green, D. C. Nelson, Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl. Environ. Microbiol. 2006, 72, 457.
Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFaqsQ%3D%3D&md5=0dc02eb08d2aa92dfc64890a1693c0deCAS |

[142]  E. J. Kerin, C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates, R. P. Mason, Mercury methylation by dissimilatory iron-reducing bacteria. Appl. Environ. Microbiol. 2006, 72, 7919.
Mercury methylation by dissimilatory iron-reducing bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWqt77K&md5=c4e3aefd392c7a14ea34fadb52a780bdCAS |

[143]  S. Hamelin, M. Amyot, T. Barkay, Y. Wang, D. Planas, Methanogens: principal methylators of mercury in Lake Periphyton. Environ. Sci. Technol. 2011, 45, 7693.
Methanogens: principal methylators of mercury in Lake Periphyton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVylsbfM&md5=4afb21e4bce965bf75e66866eae1847dCAS |

[144]  L. L. Loseto, G. A. Stern, D. Deibel, T. L. Connelly, A. Prokopowicz, D. R. S. Lean, L. Fortier, S. H. Ferguson, Linking mercury exposure to habitat and feeding behaviour in Beaufort Sea beluga whales. J. Mar. Syst. 2008, 74, 1012.
Linking mercury exposure to habitat and feeding behaviour in Beaufort Sea beluga whales.Crossref | GoogleScholarGoogle Scholar |

[145]  L. M. Campbell, R. J. Norstrom, K. A. Hobson, D. C. G. Muir, S. Backus, A. Fisk, Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci. Total Environ. 2005, 351–352, 247.
Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay).Crossref | GoogleScholarGoogle Scholar |

[146]  L. Atwell, K. A. Hobson, H. E. Welch, Biomagnification and bioaccumulation of mercury in an Arctic marine food web: insights from stable nitrogen isotope analysis. Can. J. Fish. Aquat. Sci. 1998, 55, 1114.
Biomagnification and bioaccumulation of mercury in an Arctic marine food web: insights from stable nitrogen isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFOjsr0%3D&md5=bdd477d50b90a28bdb597b5436c3194cCAS |

[147]  H. Niki, P. D. Maker, C. M. Savage, L. P. Breitenbach, A long-path Fourier-transform infrared study of the kinetics and mechanism for the HO-radical initiated oxidation of dimethylmercury. J. Phys. Chem. 1983, 87, 4978.
A long-path Fourier-transform infrared study of the kinetics and mechanism for the HO-radical initiated oxidation of dimethylmercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmtFalsLc%3D&md5=56ee051eda1a56da11173d34873992f0CAS |

[148]  H. Niki, P. S. Maker, C. M. Savage, L. P. Breitenbach, A Fourier-transform infrared study of the kinetics and mechanism of the reaction of atomic chlorine with dimethylmercury. J. Phys. Chem. 1983, 87, 3722.
A Fourier-transform infrared study of the kinetics and mechanism of the reaction of atomic chlorine with dimethylmercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlt1Wltbo%3D&md5=3d4e3d6f0d1b72a6cdc8a53adf54446bCAS |

[149]  R. Pongratz, K. G. Heumann, Production of methylated mercury, lead, and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 1999, 39, 89.
Production of methylated mercury, lead, and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs12gu7k%3D&md5=d7a462e638e62c1eaee42056195d7aedCAS |

[150]  R. Pongratz, K. G. Heumann, Production of methylated mercury and lead by polar macroalgae – a significant natural source for atmospheric heavy metals in clean room compartments. Chemosphere 1998, 36, 1935.
Production of methylated mercury and lead by polar macroalgae – a significant natural source for atmospheric heavy metals in clean room compartments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhslahsb0%3D&md5=83ba850efcf3103c58f59f288ccf9d9dCAS |

[151]  K. Gårdfeldt, J. Munthe, D. Strömberg, O. Lindqvist, A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase. Sci. Total Environ. 2003, 304, 127.
A kinetic study on the abiotic methylation of divalent mercury in the aqueous phase.Crossref | GoogleScholarGoogle Scholar |

[152]  C. R. Hammerschmidt, C. H. Lamborg, W. F. Fitzgerald, Aqueous phase methylation as a potential source of methylmercury in wet deposition. Atmos. Environ. 2007, 41, 1663.
Aqueous phase methylation as a potential source of methylmercury in wet deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslCjsQ%3D%3D&md5=a762bb1c8c7bc64056a16dfd53059457CAS |

[153]  S. D. Siciliano, N. J. O’Driscoll, R. Tordon, J. Hill, S. Beauchamp, D. R. Lean, Abiotic production of methylmercury by solar radiation. Environ. Sci. Technol. 2005, 39, 1071.
Abiotic production of methylmercury by solar radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Grtg%3D%3D&md5=be14e6d1fadef8f36358fe88c9695812CAS |

[154]  L. Oiffer, S. D. Siciliano, Methyl mercury production and loss in Arctic soil. Sci. Total Environ. 2009, 407, 1691.
Methyl mercury production and loss in Arctic soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Gns74%3D&md5=5c461bc3e9e222289f1c0a6f7ac98458CAS |

[155]  L. Poissant, H. Zhang, J. Canario, P. Constant, Critical review of mercury fates and contamination in the Arctic tundra ecosystem. Sci. Total Environ. 2008, 400, 173.
Critical review of mercury fates and contamination in the Arctic tundra ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yqsr7N&md5=93fd3f83aa94d0e660f9dc1b040f2849CAS |

[156]  I. Lehnherr, V. L. St Louis, Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems. Environ. Sci. Technol. 2009, 43, 5692.
Importance of ultraviolet radiation in the photodemethylation of methylmercury in freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvF2ku7s%3D&md5=5ad1439767b6f083e46ef6d1a74ee0beCAS |

[157]  T. Barkay, S. M. Miller, A. O. Summers, Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 2003, 27, 355.
Bacterial mercury resistance from atoms to ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVOlt7c%3D&md5=ef951e248ccfa24ad5ab766cd43042dbCAS |

[158]  L. L. Loseto, Beaufort Sea beluga whales: an ecological approach to examining diet and dietary sources of mercury 2007, Ph.D. thesis,,University of Manitoba, Winnipeg.

[159]  B. D. Hall, D. M. Rosenberg, A. P. Wiens, Methyl mercury in aquatic insects from an experimental reservoir. Can. J. Fish. Aquat. Sci. 1998, 55, 2036.
Methyl mercury in aquatic insects from an experimental reservoir.Crossref | GoogleScholarGoogle Scholar |

[160]  L. L. Loseto, G. A. Stern, S. H. Ferguson, Size and biomagnification: how habitat selection explains Beluga Mercury levels. Environ. Sci. Technol. 2008, 42, 3982.
Size and biomagnification: how habitat selection explains Beluga Mercury levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVKmtr0%3D&md5=58996c5d849cead3e58cddd2f9715459CAS |

[161]  G. Cabana, J. B. Rasmussen, Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 1994, 372, 255.
Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXit1OqsL0%3D&md5=770d97832230031a365d3699cc50f9a9CAS |

[162]  C. M. Headon, R. J. Hall, G. Mierle, Dynamics of radiolabelled methylmercury in crayfish (Orconectes virilis). Can. J. Fish. Aquat. Sci. 1996, 53, 2862.
Dynamics of radiolabelled methylmercury in crayfish (Orconectes virilis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFSlsL0%3D&md5=34d7d53ac7e3a8dd4ad33ba5cd38d6b7CAS |

[163]  K. A. Kidd, M. J. Paterson, R. H. Hesslein, D. C. G. Muir, R. E. Hecky, Effects of northern pike (Esox lucius) additions on pollutant bioaccumulation and food web structure, as determined by δ13C and δ15N, in a eutrophic and an oligotrophic lake. Can. J. Fish. Aquat. Sci. 1999, 56, 2193.
Effects of northern pike (Esox lucius) additions on pollutant bioaccumulation and food web structure, as determined by δ13C and δ15N, in a eutrophic and an oligotrophic lake.Crossref | GoogleScholarGoogle Scholar |

[164]  R. Karimi, C. Y. Chen, P. C. Pickhardt, N. S. Fisher, C. L. Folt, Stoichiometric controls of mercury dilution by growth. Proc. Natl. Acad. Sci. USA 2007, 104, 7477.
Stoichiometric controls of mercury dilution by growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslWqtrk%3D&md5=8a224c8ce6aaa1129a932aca67693b6cCAS |

[165]  H. K. Swanson, K. A. Kidd, Mercury concentrations in arctic food fishes reflect the presence of anadromous arctic charr (Salvelinus alpinus), species, and life history. Environ. Sci. Technol. 2010, 44, 3286.
Mercury concentrations in arctic food fishes reflect the presence of anadromous arctic charr (Salvelinus alpinus), species, and life history.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFequrk%3D&md5=28b320b44d03e06696c4068e6dde5144CAS |

[166]  H. Swanson, N. Gantner, K. A. Kidd, D. Muir, J. D. Reist, Comparison of mercury concentrations in landlocked, resident, and sea-run fish (Salvelinus spp.) from Nunavut, Canada. Environ. Toxicol. Chem. 2011, 30, 1459.
Comparison of mercury concentrations in landlocked, resident, and sea-run fish (Salvelinus spp.) from Nunavut, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1ygs7s%3D&md5=a3d56da23488ff84a5d1d384f6685853CAS |

[167]  F. F. Rigét, P. Møller, R. Dietz, T. G. Nielsen, G. Asmund, J. Strand, M. M. Larsen, K. A. Hobson, Transfer of mercury in the marine food web at West Greenland. J. Environ. Monit. 2007, 9, 877.
Transfer of mercury in the marine food web at West Greenland.Crossref | GoogleScholarGoogle Scholar |

[168]  I. G. Hallanger, A. Ruus, D. Herzke, N. A. Warner, A. Evenset, E. S. Heimstad, G. W. Gabrielsen, K. Borgå, Influence of season, location, and feeding strategy on bioaccumulation of halogenated organic contaminants in Arctic marine zooplankton. Environ. Toxicol. Chem. 2011, 30, 77.
Influence of season, location, and feeding strategy on bioaccumulation of halogenated organic contaminants in Arctic marine zooplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGqsA%3D%3D&md5=7551b2c96843fcab7f638ac1a384174dCAS |

[169]  L. Legendre, S. F. Ackley, G. S. Dieckmann, B. Gulliksen, R. Horner, T. Hoshiai, I. A. Melnikov, W. S. Reeburgh, M. Spindler, C. W. Sullivan, Ecology of sea ice biota. Polar Biol. 1992, 12, 429.
Ecology of sea ice biota.Crossref | GoogleScholarGoogle Scholar |

[170]  M. Gosselin, M. Levasseur, P. A. Wheeler, R. A. Horner, B. C. Booth, New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 1623.
New measurements of phytoplankton and ice algal production in the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVWjt7w%3D&md5=06c876603b14b582ea00c2b12ccf61c9CAS |

[171]  R. A. Horner, Sea Ice Biota 1985, pp. 173–190 (CRC Press: Boca Raton, FL).

[172]  A. K. Geynrikh, Mass species of oceanic phytophagous copepods and their ecology. Oceanology (Mosc.) 1986, 26, 213.

[173]  A. M. Springer, C. P. McRoy, M. V. Flint, The Bering Sea green belt: shelf-edge process and ecosystem production. Fish. Oceanogr. 1996, 5, 205.
The Bering Sea green belt: shelf-edge process and ecosystem production.Crossref | GoogleScholarGoogle Scholar |

[174]  H. Auel, W. Hagen, Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar. Biol. 2002, 140, 1013.
Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean.Crossref | GoogleScholarGoogle Scholar |

[175]  M. Poltermann, Arctic sea ice as feeding ground for amphipods – food sources and strategies. Polar Biol. 2001, 24, 89.
Arctic sea ice as feeding ground for amphipods – food sources and strategies.Crossref | GoogleScholarGoogle Scholar |

[176]  M. S. W. Bradstreet, W. E. Cross, Trophic relationships at high Arctic ice edges. Arctic 1982, 35, 1.

[177]  P. C. Craig, W. Griffiths, L. Haldorson, L. McElderry, Ecological studies of Arctic cod (Boreogadus saida) in Beaufort Sea coastal waters, Alaska. Can. J. Fish. Aquat. Sci. 1982, 39, 395.
Ecological studies of Arctic cod (Boreogadus saida) in Beaufort Sea coastal waters, Alaska.Crossref | GoogleScholarGoogle Scholar |

[178]  M. S. W. Bradstreet, K. J. Finley, A. D. Sekerak, W. B. Griffiths, C. R. Evans, M. Fabijan, H. E. Stallard, Aspects of the biology of Arctic cod (Boreogadus saida) and its importance in Arctic marine food chains, Canada Department of Fisheries and Oceans, Central and Arctic Region, Technical Report 1491 1986 (Fisheries and Oceans Canada: Winnipeg).

[179]  T. G. Smith, The ringed seal, Phoca hispida, of the Canadian western Arctic. Can. Bull. Fish. Aquat. Sci. 1987, 216, 43.

[180]  O. J. Lønne, B. Gulliksen, Size, age and diet of polar cod, Boreogadus saida (Lepechin 1773) in ice covered waters. Polar Biol. 1989, 9, 187.
Size, age and diet of polar cod, Boreogadus saida (Lepechin 1773) in ice covered waters.Crossref | GoogleScholarGoogle Scholar |

[181]  O. J. Lønne, G. W. Gabrielsen, Summer diet of seabirds feeding in sea-ice-covered waters near Svalbard. Polar Biol. 1992, 12, 685.
Summer diet of seabirds feeding in sea-ice-covered waters near Svalbard.Crossref | GoogleScholarGoogle Scholar |

[182]  K. J. Frost, L. F. Lowry, Trophic importance of some marine gadids in Northern Alaska and their body-otolith size relationships. Fish Bull. 1981, 79, 187.

[183]  K. A. Hobson, A. Fisk, N. Karnovsky, M. Holst, J.-M. Gagnon, M. Fortier, A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 5131.
A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Cgs7s%3D&md5=47886cee6d11c04f8f53b231ff290e45CAS |

[184]  R. A. Horner, G. C. Schrader, Relative contributions of ice algae, phytoplankton and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 1982, 35, 485.

[185]  D. Hamel, A. de Vernal, M. Gosselin, C. Hillaire-Marcel, Organic-walled microfossils and geochemical tracers: sedimentary indicators of productivity changes in the North Water and northern Baffin Bay during the last centuries. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002, 49, 5277.
Organic-walled microfossils and geochemical tracers: sedimentary indicators of productivity changes in the North Water and northern Baffin Bay during the last centuries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1CgsL4%3D&md5=898e5365c06b30221c35f8d7896c40c5CAS |

[186]  R. Bargagli, C. Agnorelli, F. Borghini, F. Monaci, Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environ. Sci. Technol. 2005, 39, 8150.
Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeqtLrE&md5=dbab42d5ddd3c87b63c813075495de86CAS |

[187]  J. Carignan, J. Sonke, The effect of atmospheric mercury depletion events on the net deposition flux around Hudson Bay, Canada. Atmos. Environ. 2010, 44, 4372.
The effect of atmospheric mercury depletion events on the net deposition flux around Hudson Bay, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Sns7fP&md5=b081fe1c1e8dbda5108b170de4f1ac84CAS |

[188]  E. Sakshaug, Primary and secondary production in the Arctic Seas, in The Organic Carbon Cycle in the Arctic Ocean (Eds R. Stein, R. W. Macdonald) 2004, pp. 57–81 (Springer: Berlin).

[189]  D. Lavoie, R. W. Macdonald, K. L. Denman, Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: a modelling study. J. Mar. Syst. 2009, 75, 17.
Primary productivity and export fluxes on the Canadian shelf of the Beaufort Sea: a modelling study.Crossref | GoogleScholarGoogle Scholar |

[190]  N. Mumm, H. Auel, H. Hanssen, W. Hagen, C. Richter, H.-J. Hirche, Breaking the ice: large-scale distribution of mesozooplankton after a decade of Arctic and transpolar cruises. Polar Biol. 1998, 20, 189.
Breaking the ice: large-scale distribution of mesozooplankton after a decade of Arctic and transpolar cruises.Crossref | GoogleScholarGoogle Scholar |

[191]  I. Jæger, H. Hop, G. W. Gabrielsen, Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci. Total Environ. 2009, 407, 4744.
Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard.Crossref | GoogleScholarGoogle Scholar |

[192]  R. Stein, R. W. Macdonald (Eds), The Organic Carbon Cycle in the Arctic Ocean 2004 (Springer: Berlin).

[193]  M. C. Serreze, A. P. Barrett, A. G. Slater, R. A. Woodgate, K. Aagaard, R. B. Lammers, M. Steel, R. Moritz, M. Meredith, C. M. Lee, The large-scale freshwater cycle of the Arctic. J. Geophys. Res. 2006, 111, C11010.
The large-scale freshwater cycle of the Arctic.Crossref | GoogleScholarGoogle Scholar |

[194]  G. Darnis, D. G. Barber, L. Fortier, Sea ice and the onshore–offshore gradient in pre-winter zooplankton assemblages in southeastern Beaufort Sea. J. Mar. Syst. 2008, 74, 994.
Sea ice and the onshore–offshore gradient in pre-winter zooplankton assemblages in southeastern Beaufort Sea.Crossref | GoogleScholarGoogle Scholar |

[195]  B. J. Gallaway, W. B. Griffiths, P. C. Craig, W. T. Gazey, J. W. Helmericks, An assessment of the Colville River delta stock of Arctic cisco: migrants from Canada. Biol. Pap. Univ. Alaska 1983, 21, 4.

[196]  R. G. Fechhelm, L. R. Martin, B. J. Gallaway, W. J. Wilson, W. B. Griffiths, Prudhoe Bay causeways and the summer coastal movements of Arctic cisco and least cisco. Arctic 1991, 52, 139.

[197]  A. Forest, M. Sampei, H. Hattori, R. Makabe, H. Sasaki, M. Fukuchi, P. Wassmann, L. Fortier, Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): physical and biological forcing of shelf-basin exchanges. J. Mar. Syst. 2007, 68, 39.
Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): physical and biological forcing of shelf-basin exchanges.Crossref | GoogleScholarGoogle Scholar |

[198]  D. M. Schell, Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms: delayed production from peat in Arctic food webs. Science 1983, 219, 1068.
Carbon-13 and carbon-14 abundances in Alaskan aquatic organisms: delayed production from peat in Arctic food webs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvjvFOrtA%3D%3D&md5=b95dd79296999cbacd52ef932e45b2f5CAS |

[199]  M.-È. Garneau, W. F. Vincent, L. Alonso-Sàez, Y. Gratton, C. Lovejoy, Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem. Aquat. Microb. Ecol. 2006, 42, 27.
Prokaryotic community structure and heterotrophic production in a river-influenced coastal arctic ecosystem.Crossref | GoogleScholarGoogle Scholar |

[200]  K. E. Conlan, H. S. Lenihan, R. G. Kvitek, J. S. Oliver, Ice scour disturbance to benthic communities in the Canadian High Arctic. Mar. Ecol. Prog. Ser. 1998, 166, 1.
Ice scour disturbance to benthic communities in the Canadian High Arctic.Crossref | GoogleScholarGoogle Scholar |

[201]  R. G. Kvitek, K. E. Conlan, O. J. Iampietro, Black pools of death: hypoxic, brine-filled ice gouge depressions become lethal traps for benthic organisms in a shallow Arctic embayment. Mar. Ecol. Prog. Ser. 1998, 162, 1.
Black pools of death: hypoxic, brine-filled ice gouge depressions become lethal traps for benthic organisms in a shallow Arctic embayment.Crossref | GoogleScholarGoogle Scholar |

[202]  J. P. Coelho, M. Nunes, M. Dolbeth, M. E. Pereira, A. C. Duarte, M. A. Pardal, The role of two sediment-dwelling invertebrates on the mercury transfer from sediments to the estuarine trophic web. Estuar. Coast. Shelf Sci. 2008, 78, 505.
The role of two sediment-dwelling invertebrates on the mercury transfer from sediments to the estuarine trophic web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVOjsr8%3D&md5=ddd317208915b674fbde1a7bb5ef7ea7CAS |

[203]  J. M. Benoit, C. C. Gilmour, A. Heyes, R. P. Mason, C. L. Miller, Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems, in Biogeochemistry of Environmentally Important Trace Elements, ACS Symposium Series Number 835 2002, pp. 262–297 (American Chemical Society: Washington, DC).

[204]  R. C. Harris, J. W. M. Rudd, M. Amyot, C. L. Babiarz, K. G. Beaty, P. J. Blanchfield, R. A. Bodaly, B. A. Branfireun, C. C. Gilmour, J. A. Graydon, A. Heyes, H. Hintelmann, J. P. Hurley, C. A. Kelly, D. P. Krabbenhoft, S. E. Lindberg, R. P. Mason, M. J. Paterson, C. L. Podemski, A. Robinson, K. A. Sandilands, G. R. Southworth, V. L. St Louis, M. T. Tate, Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc. Natl. Acad. Sci. USA 2007, 104, 16 586.
Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wgs7rM&md5=c0b56fcb38ed76b920270428cf49951fCAS |

[205]  C. R. Hammerschmidt, W. F. Fitzgerald, Methylmercury in mosquitoes related to atmospheric mercury deposition and contamination. Environ. Sci. Technol. 2005, 39, 3034.
Methylmercury in mosquitoes related to atmospheric mercury deposition and contamination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1agsr4%3D&md5=c6d8903f5f3820961f6bafd6423793e4CAS |

[206]  N. Gantner, M. Power, D. Iqaluk, M. Meili, H. Borg, M. Sundbom, K. Solomon, G. Lawson, D. C. Muir, Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian High Arctic. Part I – Insights from trophic relationships in 18 lakes. Environ. Toxicol. Chem. 2010, 29, 621.
Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian High Arctic. Part I – Insights from trophic relationships in 18 lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12is7w%3D&md5=b1d46e4ec65bc6c575e97b4a0103035dCAS |

[207]  N. Gantner, D. C. Muir, M. Power, D. Iqaluk, J. D. Reist, J. A. Babaluk, M. Meili, H. Borg, J. Hammar, W. Michaud, J. B. Dempson, K. R. Solomon, Mercury Concentrations in Landlocked Arctic char (Salvelinus alpinus) from the Canadian High Arctic. Part II – Influence of lake biotic and abiotic characteristics on geographical trends in 27 populations. Environ. Toxicol. Chem. 2010, 29, 633.
Mercury Concentrations in Landlocked Arctic char (Salvelinus alpinus) from the Canadian High Arctic. Part II – Influence of lake biotic and abiotic characteristics on geographical trends in 27 populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt12is78%3D&md5=373d8f97f40b56410c3f2d7b5c1e70cfCAS |

[208]  J. Chételat, M. Amyot, Elevated methylmercury in High Arctic Daphnia and the role of productivity in controlling their distribution. Glob. Change Biol. 2009, 15, 706.
Elevated methylmercury in High Arctic Daphnia and the role of productivity in controlling their distribution.Crossref | GoogleScholarGoogle Scholar |

[209]  C. R. Hammerschmidt, W. F. Fitzgerald, Methylmercury in arctic Alaskan mosquitoes: implications for impact of atmospheric mercury depletion events. Environ. Chem. 2008, 5, 127.
Methylmercury in arctic Alaskan mosquitoes: implications for impact of atmospheric mercury depletion events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVegt7g%3D&md5=6fbc8142cd5c76fd802279caa83f6e00CAS |

[210]  M. S. Evans, W. L. Lockhart, L. Doetzel, G. Low, D. Muir, K. Kidd, G. Stephens, J. Delaronde, Elevated mercury concentrations in fish in lakes in the Mackenzie River Basin: the role of physical, chemical, and biological factors. Sci. Total Environ. 2005, 351–352, 479.
Elevated mercury concentrations in fish in lakes in the Mackenzie River Basin: the role of physical, chemical, and biological factors.Crossref | GoogleScholarGoogle Scholar |

[211]  M. S. Evans, D. Muir, W. L. Lockhart, G. Stern, M. Ryan, P. Roach, Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview. Sci. Total Environ. 2005, 351–352, 479.
Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview.Crossref | GoogleScholarGoogle Scholar |

[212]  F. Cremona, D. Planas, M. Lucotte, Assessing the importance of macroinvertebrate trophic dead ends in the lower transfer of methylmercury in littoral food webs. Can. J. Fish. Aquat. Sci. 2008, 65, 2043.
Assessing the importance of macroinvertebrate trophic dead ends in the lower transfer of methylmercury in littoral food webs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gru77J&md5=a00c67f4bbd967848f27afe0356be986CAS |

[213]  F. F. Rigét, G. Asmund, P. Aastrup, Mercury in Arctic char (Salvelinus alpinus) populations from Greenland. Sci. Total Environ. 2000, 245, 161.
Mercury in Arctic char (Salvelinus alpinus) populations from Greenland.Crossref | GoogleScholarGoogle Scholar |

[214]  L. W. Lockhart, G. A. Stern, G. Low, M. Hendzel, G. Boila, P. Roach, M. S. Evans, B. N. Billeck, J. DeLaronde, S. Friesen, K. Kidd, S. Atkins, D. S. G. Muir, M. Stoddart, G. Stephens, S. Stephenson, S. Harbicht, N. Snowshoe, B. Grey, S. Thompson, N. DeGraff, A history of total mercury in edible muscle of fish from lakes in northern Canada. Sci. Total Environ. 2005, 351–352, 427.
A history of total mercury in edible muscle of fish from lakes in northern Canada.Crossref | GoogleScholarGoogle Scholar |

[215]  S. C. Jewett, L. K. Duffy, Mercury in fishes of Alaska, with emphasis on subsistence species. Sci. Total Environ. 2007, 387, 3.
Mercury in fishes of Alaska, with emphasis on subsistence species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyrsb%2FO&md5=b119a7ea2a90fed3a8ba5ebba7e93050CAS |

[216]  B. Young, L. Loseto, S. Ferguson, Diet differences among age classes of Arctic seals: evidence from stable isotope and mercury biomarkers. Polar Biol. 2010, 33, 153.
Diet differences among age classes of Arctic seals: evidence from stable isotope and mercury biomarkers.Crossref | GoogleScholarGoogle Scholar |

[217]  V. L. St Louis, A. E. Derocher, I. Stirling, J. A. Graydon, C. Lee, E. Jocksch, E. Richardson, S. Ghorpade, A. K. Kwan, J. L. Kirk, I. Lehnherr, H. K. Swanson, Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic. Environ. Sci. Technol. 2011, 45, 5922.
Differences in mercury bioaccumulation between polar bears (Ursus maritimus) from the Canadian high- and sub-Arctic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFSqsLs%3D&md5=f48bdb4bfc50441dbd97192d0d8dbdccCAS |

[218]  L. A. Dehn, G. G. Sheffield, E. H. Follmann, L. K. Duffy, D. L. Thomas, G. R. Bratton, R. J. Taylor, T. M. O’Hara, Trace elements in tissues of phocid seals harvested in the Alaskan and Canadian Arctic: influence of age and feeding ecology. Can. J. Zool. 2005, 83, 726.
Trace elements in tissues of phocid seals harvested in the Alaskan and Canadian Arctic: influence of age and feeding ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVyhtrjN&md5=f908bca76e0e7d1b304e3cae9fa369c7CAS |

[219]  P. B. McIntyre, D. A. Beauchamp, Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington. Sci. Total Environ. 2007, 372, 571.
Age and trophic position dominate bioaccumulation of mercury and organochlorines in the food web of Lake Washington.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitl2ruw%3D%3D&md5=4d662c31b02b791621aade4ae283a1b8CAS |

[220]  S. Tucker, W. D. Bowen, S. J. Iverson, Dimensions of diet segregation in grey seals Halichoerus grypus revealed through stable isotopes of carbon (δ13C) and nitrogen (δ15N). Mar. Ecol. Prog. Ser. 2007, 339, 271.
Dimensions of diet segregation in grey seals Halichoerus grypus revealed through stable isotopes of carbon (δ13C) and nitrogen (δ15N).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVKmsr8%3D&md5=857d188bf6b965ea710160fbb112b95dCAS |

[221]  T. W. Horton, J. D. Blum, Z. Xie, M. Hren, C. P. Chamberlain, Stable isotope food-web analysis and mercury biomagnification in polar bears (Ursus maritimus). Polar Res. 2009, 28, 443.
Stable isotope food-web analysis and mercury biomagnification in polar bears (Ursus maritimus).Crossref | GoogleScholarGoogle Scholar |

[222]  L. L. Loseto, P. Richard, G. A. Stern, J. Orr, S. H. Ferguson, Segregation of Beaufort Sea beluga whales during the open-water season. Can. J. Zool. 2006, 84, 1743.
Segregation of Beaufort Sea beluga whales during the open-water season.Crossref | GoogleScholarGoogle Scholar |

[223]  L. L. Loseto, G. A. Stern, T. L. Connelly, D. Deibel, B. Gemmill, A. Prokopowicz, L. Fortier, S. H. Ferguson, Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. J. Exp. Mar. Biol. Ecol. 2009, 374, 12.
Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVWrtrg%3D&md5=c58c5f631dfb6b59cc8afad28d8d03baCAS |

[224]  B. J. Le Boeuf, D. E. Crocker, D. P. Costa, S. B. Blackwell, P. M. Webb, D. S. Houser, Foraging ecology of northern elephant seals. Ecol. Monogr. 2000, 70, 353.
Foraging ecology of northern elephant seals.Crossref | GoogleScholarGoogle Scholar |

[225]  K. R. R. A. Guiguer, J. D. Reist, M. Power, J. A. Babaluk, Using stable isotopes to confirm the trophic ecology of Arctic charr morphotypes from Lake Hazen, Nunavut, Canada. J. Fish Biol. 2002, 60, 348.
Using stable isotopes to confirm the trophic ecology of Arctic charr morphotypes from Lake Hazen, Nunavut, Canada.Crossref | GoogleScholarGoogle Scholar |

[226]  K. A. Hobson, H. E. Welch, Cannibalism and trophic structure in a high Arctic lake: insights from stable-isotope analysis. Can. J. Fish. Aquat. Sci. 1995, 52, 1195.
Cannibalism and trophic structure in a high Arctic lake: insights from stable-isotope analysis.Crossref | GoogleScholarGoogle Scholar |

[227]  D. B. Stewart, M. J. Bernier, An aquatic resource survey of Melville Peninsula, Southampton Island, and the Northeastern District of Keewatin, Northwest Territories, Background Report 2., 1982, p. 108 (Environment Canada, Lands Directorate, Indian and Northern Affairs Canada, Northern Environment Branch: Quebec, QC).

[228]  H. H. Parker, L. Johnson, Population structure, ecological segregation and reproduction in non-anadromous arctic charr, Salvelinus alpinus (L.), in four unexploited lakes in the Canadian high Arctic. J. Fish Biol. 1991, 38, 123.
Population structure, ecological segregation and reproduction in non-anadromous arctic charr, Salvelinus alpinus (L.), in four unexploited lakes in the Canadian high Arctic.Crossref | GoogleScholarGoogle Scholar |

[229]  F. F. Rigét, K. H. Nygaard, B. Christensen, Population structure, ecological segregation, and reproduction in a population of Arctic charr (Salvelinus alpinus) from Lake Tasersuaq, Greenland. Can. J. Fish. Aquat. Sci. 1986, 43, 985.
Population structure, ecological segregation, and reproduction in a population of Arctic charr (Salvelinus alpinus) from Lake Tasersuaq, Greenland.Crossref | GoogleScholarGoogle Scholar |

[230]  N. Gantner, M. Power, J. A. Babaluk, J. D. Reist, G. Kock, L. W. Lockhart, K. R. Solomon, D. C. G. Muir, Temporal trends of mercury, cesium, potassium, selenium, and thallium in arctic char (Salvelinus alpinus) from Lake Hazen, Nunavut, Canada: effects of trophic position, size, and age. Environ. Toxicol. Chem. 2009, 28, 254.
Temporal trends of mercury, cesium, potassium, selenium, and thallium in arctic char (Salvelinus alpinus) from Lake Hazen, Nunavut, Canada: effects of trophic position, size, and age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCqs70%3D&md5=a869c2760b56574eb8207354c506137eCAS |

[231]  S. Rognerud, J. O. Grimalt, B. O. Rosseland, P. Fernandez, R. Hofer, R. Lackner, B. Lauritzen, L. Lien, J. C. Massabuau, A. Ribes, Mercury and organochlorine contamination in brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) from high mountain lakes in Europe and the Svalbard archipelago. Water Air Soil Pollut. Focus 2002, 2, 209.
Mercury and organochlorine contamination in brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) from high mountain lakes in Europe and the Svalbard archipelago.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslehtr4%3D&md5=e795eb4cb93d7cb852dc80394fb4edf0CAS |

[232]  K. A. Hobson, R. T. Alisauskas, R. G. Clark, Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analysis of diet. Condor 1993, 95, 388.
Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analysis of diet.Crossref | GoogleScholarGoogle Scholar |

[233]  F. F. Farris, R. L. Dedrick, P. V. Allen, J. C. Smith, Physiological model for the pharmacokinetics of methyl mercury in the growing rat. Toxicol. Appl. Pharmacol. 1993, 119, 74.
Physiological model for the pharmacokinetics of methyl mercury in the growing rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitVOisbo%3D&md5=c70618a37e9ef360263b98ad41353675CAS |

[234]  R. Wagemann, E. Trebacz, G. Boila, L. Lockhart, Methylmercury and total mercury in tissues of arctic marine mammals. Sci. Total Environ. 1998, 218, 19.
Methylmercury and total mercury in tissues of arctic marine mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFOrsrg%3D&md5=8d6d1277df792bb3dc156a37b3219e22CAS |

[235]  J. F. Young, W. D. Wosilait, R. H. Luecke, Analysis of methylmercury deposition in umans utilizing a PBPK model and animal pharmacokinetic data. J. Toxicol. Environ. Health A 2001, 63, 19.
Analysis of methylmercury deposition in umans utilizing a PBPK model and animal pharmacokinetic data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsVarsro%3D&md5=53c391ce7428baf4fda648dd9a880d64CAS |

[236]  W. H. Schroeder, K. G. Anlauf, L. A. Barrie, J. Y. Lu, A. Steffen, D. R. Schneeberger, T. Berg, T. Arctic springtime depletion of mercury. Nature 1998, 394, 331.
T. Arctic springtime depletion of mercury.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFKnsLo%3D&md5=85556a5a19a6ec4916b11385657d5b0cCAS |

[237]  S. E. Lindberg, S. Brooks, C.-J. Lin, K. J. Scott, M. S. Landis, R. K. Stevens, M. Goodsite, A. Richter, Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environ. Sci. Technol. 2002, 36, 1245.
Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFCltrg%3D&md5=a8d7ba04c5087f3c6cf4403d7743a08dCAS |

[238]  C. Banic, S. T. Beauchamp, R. J. Tordon, W. H. Schroeder, A. Steffen, K. A. Anlauf, Vertical distribution of gaseous elemental mercury in Canada. J. Geophys. Res. 2003, 108(D9), 4264.
Vertical distribution of gaseous elemental mercury in Canada.Crossref | GoogleScholarGoogle Scholar |

[239]  T. A. Douglas, M. Sturm, W. Simpson, S. Brooks, S. Lindberg, D. Perovich, Elevated mercury measured in snow and frost flowers near arctic sea ice leads. Geophys. Res. Lett. 2005, 32, L04502.
Elevated mercury measured in snow and frost flowers near arctic sea ice leads.Crossref | GoogleScholarGoogle Scholar |

[240]  T. A. Douglas, F. Domine, M. Barret, C. Anastasio, H. J. Beine, J. Bottenheim, A. Grannas, S. Houdier, S. Netcheva, G. Rowland, R. Staebler, A. Steffen, Frost flowers growing in the arctic ocean–atmosphere–sea ice–snow interface: 1. Chemical composition. J. Geophys. Res. – Atmos. 2012, 117, D00R09.
Frost flowers growing in the arctic ocean–atmosphere–sea ice–snow interface: 1. Chemical composition.Crossref | GoogleScholarGoogle Scholar |

[241]  S. B. Brooks, A. Saiz-Lopez, H. Skov, S. E. Lindberg, J. M. C. Plane, M. E. Goodsite, The mass balance of mercury in the springtime arctic environment. Geophys. Res. Lett. 2006, 33, L13812.
The mass balance of mercury in the springtime arctic environment.Crossref | GoogleScholarGoogle Scholar |

[242]  H. Skov, S. Brooks, M. E. Goodsite, S. E. Lindberg, T. P. Meyers, M. S. Landis, M. R. B. Larsen, B. Jensen, G. McConville, J. Christensen, Measuring reactive gaseous mercury flux by relaxed eddy accumulation. Atmos. Environ. 2006, 40, 5452.
Measuring reactive gaseous mercury flux by relaxed eddy accumulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1GksLY%3D&md5=497eabf3136c49f40b4b809eba48e82cCAS |

[243]  A. P. Dastoor, D. Davignon, N. Theys, M. Van Roozendael, A. Steffen, P. A. Ariya, Modeling dynamic exchange of gaseous elemental mercury at polar sunrise. Environ. Sci. Technol. 2008, 42, 5183.
Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslyrtbs%3D&md5=47c5bca099816b8ad0b3e15fb700b6acCAS |

[244]  A. O. Steen, T. Berg, A. P. Dastoor, D. A. Durnford, L. R. Hole, K. A. Pfaffhuber, Natural and anthropogenic atmospheric mercury in the European Arctic: a speciation study. Atmos. Chem. Phys. 2011, 11, 6273.
Natural and anthropogenic atmospheric mercury in the European Arctic: a speciation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yksL%2FP&md5=b33b18c8bf27b9b94e50d27c8bcf25d9CAS |

[245]  AMAP, Arctic Monitoring and Assessment Programme Assessment 2002: Heavy Metals in the Arctic 2005 (Arctic Monitoring and Assessment Programme: Oslo, Norway).

[246]  C. P. Ferrari, P.-A. Gauchard, K. Aspmo, A. Dommergue, O. Magand, E. Bahlmann, S. Nagorski, C. Temme, R. Ebinghaus, A. Steffen, C. Banic, T. Berg, F. Planchon, C. Barbante, P. Cescon, C. F. Boutron, Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard. Atmos. Environ. 2005, 39, 7633.
Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Ålesund, Svalbard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1agsLjM&md5=af3a843a28a7e01f519a0f028ee162dbCAS |

[247]  J. L. Kirk, V. L. St Louis, M. J. Sharp, Rapid reduction and reemission of mercury deposited to snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada. Environ. Sci. Technol. 2006, 40, 7590.
Rapid reduction and reemission of mercury deposited to snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2ntb3L&md5=0832d059e3a459778fac814dd424ebb3CAS |

[248]  K. P. Johnson, J. D. Blum, G. J. Keeler, T. A. Douglas, Investigation of the deposition and emission of mercury in arctic snow during an atmospheric mercury depletion event. J. Geophys. Res. – Atmos. 2008, 113, D17304.
Investigation of the deposition and emission of mercury in arctic snow during an atmospheric mercury depletion event.Crossref | GoogleScholarGoogle Scholar |

[249]  K. J. Scott, Bioavailable mercury in arctic snow determined by a light-emitting mer-lux bioreporter. Arctic 2001, 54, 92.

[250]  C. Larose, A. Dommergue, N. Murusczak, J. Coves, C. P. Ferrari, D. Schneider, Bioavailable mercury cycling in polar snowpacks. Environ. Sci. Technol. 2011, 45, 2150.
Bioavailable mercury cycling in polar snowpacks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitlamsr8%3D&md5=45511ed47a7072d71c586e169e4bd231CAS |

[251]  F. Gagné, L. Poissant, C. Blaise, Ecotoxicity of snowpack collected from selected sites in Québec, Canada. Water Air Soil Pollut. 2009, 201, 121.
Ecotoxicity of snowpack collected from selected sites in Québec, Canada.Crossref | GoogleScholarGoogle Scholar |

[252]  D. Durnford, A. Dastoor, The behavior of mercury in the cryosphere: a review of what we know from observations. J. Geophys. Res. 2011, 116, D06305.
The behavior of mercury in the cryosphere: a review of what we know from observations.Crossref | GoogleScholarGoogle Scholar |

[253]  A. Hare, G. A. Stern, R. W. Macdonald, Z. Z. Kuzyk, F. Wang, Contemporary and preindustrial mass budgets of mercury in the Hudson Bay Marine System: the role of sediment recycling. Sci. Total Environ. 2008, 406, 190.
Contemporary and preindustrial mass budgets of mercury in the Hudson Bay Marine System: the role of sediment recycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Shs7bP&md5=7e425158626786c5c0e8fa172e82ccaeCAS |

[254]  D. Hirdman, K. Aspmo, J. F. Burkhart, S. Eckhardt, H. Sodemann, A. Stohl, Transport of mercury in the Arctic atmosphere: evidence for a springtime net sink and summer-time source. Geophys. Res. Lett. 2009, 36, L12814.
Transport of mercury in the Arctic atmosphere: evidence for a springtime net sink and summer-time source.Crossref | GoogleScholarGoogle Scholar |

[255]  R. Dietz, P. M. Outridge, K. A. Hobson, Anthropogenic contributions to mercury levels in present-day Arctic animals – a review. Sci. Total Environ. 2009, 407, 6120.
Anthropogenic contributions to mercury levels in present-day Arctic animals – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCmtrfM&md5=ebbb3915ae943dd418d31aa3ffca0accCAS |

[256]  C. T. Driscoll, J. Holsapple, C. L. Schofield, R. Munson, The chemistry and transport of mercury in a small wetland in the Adirondack region of New York, USA. Biogeochem. 1998, 40, 137.
The chemistry and transport of mercury in a small wetland in the Adirondack region of New York, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlakur8%3D&md5=0ccb5e38dbe780c49f091636fbbcbfc6CAS |

[257]  M. E. Galloway, B. A. Branfireun, Mercury dynamics of a temperate forested wetland. Sci. Total Environ. 2004, 325, 239.
Mercury dynamics of a temperate forested wetland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVCgsrg%3D&md5=68bdd8fd6170e828d55d15ef768d36abCAS |

[258]  E. Steinnes, T. Berg, T. E. Sjøbakk, Temporal and spatial trends in Hg deposition monitored by moss analysis. Sci. Total Environ. 2003, 304, 215.
Temporal and spatial trends in Hg deposition monitored by moss analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit12itrw%3D&md5=a5f5520977db7ebd73f46eabcbbf637aCAS |

[259]  E. Steinnes, T. E. Sjobakk, Order-of-magnitude increase of Hg in Norwegian peat profiles since the outset of industrial activity in Europe. Environ. Pollut. 2005, 137, 365.
Order-of-magnitude increase of Hg in Norwegian peat profiles since the outset of industrial activity in Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1KjtLY%3D&md5=c50d7f64404887df10ceb4b37a6f7c28CAS |

[260]  T. Berg, K. Aspmo, E. Steinnes, Transport of Hg from atmospheric mercury depletion events to the mainland of Norway and its possible influence on Hg deposition. Geophys. Res. Lett. 2008, 35, L09802.
Transport of Hg from atmospheric mercury depletion events to the mainland of Norway and its possible influence on Hg deposition.Crossref | GoogleScholarGoogle Scholar |

[261]  W. L. Lockhart, P. Wilkinson, B. N. Billeck, R. A. Danell, R. V. Hunt, G. J. Brunskill, J. Delaronde, V. St Louis, Fluxes of mercury to lake sediments in central and northern Canada inferred from dated sediment cores. Biogeochem 1998, 40, 163.
Fluxes of mercury to lake sediments in central and northern Canada inferred from dated sediment cores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlakur0%3D&md5=bdeb75f046f1a7e2cf2d60d5dbcef44fCAS |

[262]  D. H. Landers, C. Gubala, M. Verta, M. Lucotte, K. Johansson, T. Vlasova, W. L. Lockhart, Using lake sediment mercury flux ratios to evaluate the regional and continental dimensions of mercury deposition in arctic and boreal ecosystems. Atmos. Environ. 1998, 32, 919.
Using lake sediment mercury flux ratios to evaluate the regional and continental dimensions of mercury deposition in arctic and boreal ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFOktro%3D&md5=57a18c7cca08ac00421302605a2c1394CAS |

[263]  R. Bindler, I. Renberg, P. G. Appleby, N. J. Anderson, N. L. Rose, Mercury accumulation rates and spatial patterns in lake sediments from West Greenland: a coast to ice margin transect. Environ. Sci. Technol. 2001, 35, 1736.
Mercury accumulation rates and spatial patterns in lake sediments from West Greenland: a coast to ice margin transect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1Cks7w%3D&md5=0f6555533197c8142bf5ef66d566ab5fCAS |

[264]  R. Bindler, C. Olofsson, I. Renberg, W. Frech, Temporal trends in mercury accumulation in lake sediments in Sweden. Water Air Soil Pollut. Focus 2001, 1, 343.
Temporal trends in mercury accumulation in lake sediments in Sweden.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslKjurY%3D&md5=91a3981ac8358c0fc54a79852828087eCAS |

[265]  L. C. Smith, Y. Sheng, G. M. MacDonald, A first-pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on Northern Hemisphere lake distribution. Permafrost Periglac. Proc 2007, 18, 201.
A first-pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on Northern Hemisphere lake distribution.Crossref | GoogleScholarGoogle Scholar |

[266]  K. E. Frey, L. C. Smith, How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia. Global Biogeochem. Cycles 2007, 21, GB1016.
How well do we know northern land cover? Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia.Crossref | GoogleScholarGoogle Scholar |

[267]  D. F. Grigal, Inputs and outputs of mercury from terrestrial watersheds: a review. Environ. Rev. 2002, 10, 1.
Inputs and outputs of mercury from terrestrial watersheds: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFChtLs%3D&md5=a5f2b865715fdaab959ce93d55fbdfa9CAS |

[268]  R. P. Mason, W. F. Fitzgerald, F. M. M. Morel, The biogeo-chemical cycling of elemental mercury: anthropogenic influences. Geochim. Cosmochim. Acta 1994, 58, 3191.
The biogeo-chemical cycling of elemental mercury: anthropogenic influences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsVSgt7g%3D&md5=243fae0818bee1482264616940679969CAS |

[269]  D. F. Grigal, Mercury sequestration in forests and peatlands: a review. J. Environ. Qual. 2003, 32, 393.
Mercury sequestration in forests and peatlands: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslChtb4%3D&md5=aeb2f10cd55870856b364ba1282ff456CAS |

[270]  A. J. Poulain, V. Roy, M. D. Amyot, Influence of temperate mixed and deciduous tree covers on Hg concentrations and photoredox transformations in snow. Geochim. Cosmochim. Acta 2007, 71, 2448.
Influence of temperate mixed and deciduous tree covers on Hg concentrations and photoredox transformations in snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFahtbc%3D&md5=f678502d1f304932670262e92eaf2a55CAS |

[271]  S. A. Melnikov, S. V. Vlasov, A. N. Gorshkov, Activity 4. Study of biomagnification in Arctic food-chains, in Arctic Monitoring and Assessment Programme Assessment 2002. Heavy Metals in the Arctic 2005 (Arctic Monitoring and Assessment Programme: Oslo, Norway).

[272]  E. Gorham, Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182.
Northern peatlands: role in the carbon cycle and probable responses to climatic warming.Crossref | GoogleScholarGoogle Scholar |

[273]  W. Shotyk, M. E. Goodsite, F. Roos-Barraclough, R. Frei, J. Heinemeier, G. Asmund, C. Lohse, T. S. Hansen, Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C ‘bomb pulse curve’. Geochim. Cosmochim. Acta 2003, 67, 3991.
Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C ‘bomb pulse curve’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Slurc%3D&md5=69e89f11d72aaa93ab8a1420fb741f61CAS |

[274]  W. Shotyk, M. E. Goodsite, F. Roos-Barraclough, N. Givelet, G. Le Roux, D. Weiss, A. K. Cheburkin, K. Knudsen, J. Heinemeier, W. O. Van Der Knaap, S. A. Norton, C. Lohse, Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands. Geochim. Cosmochim. Acta 2005, 69, 1.
Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVKl&md5=f1ee8283dff3e4a3c42cc8aa4ce1610bCAS |

[275]  X. Faïn, C. P. Ferrari, A. Dommergue, M. Albert, M. Battle, L. Arnaud, J.-M. Barnola, W. Cairns, C. Barbante, C. Boutron, Mercury in the snow and firn at Summit Station, Central Greenland, and implications for the study of past atmospheric mercury levels. Atmos. Chem. Phys. 2008, 8, 3441.
Mercury in the snow and firn at Summit Station, Central Greenland, and implications for the study of past atmospheric mercury levels.Crossref | GoogleScholarGoogle Scholar |

[276]  F. Dominé, P. B. Shepson, Air–snow interactions and atmospheric chemistry. Science 2002, 297, 1506.
Air–snow interactions and atmospheric chemistry.Crossref | GoogleScholarGoogle Scholar |

[277]  C. F. Boutron, G. M. Vandal, W. F. Fitzgerald, C. P. Ferrari, A forty year record of mercury in central Greenland snow. Geophys. Res. Lett. 1998, 25, 3315.
A forty year record of mercury in central Greenland snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1Sgtbk%3D&md5=a3980615eb4f9c3d287d5cec628a4949CAS |

[278]  J. L. Mann, S. E. Long, C. A. Shuman, W. R. Kelly, Determination of mercury content in a shallow firn core from greenland by isotope dilution inductively coupled plasma mass spectrometry. Water Air Soil Pollut. 2005, 163, 19.
Determination of mercury content in a shallow firn core from greenland by isotope dilution inductively coupled plasma mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlKgtr4%3D&md5=9cd8e20790795fe0cb89466ebdb1ce9dCAS |

[279]  P. Jitaru, H. G. Infante, C. P. Ferrari, A. Dommergue, C. F. Boutron, F. C. Adams, Present century record of mercury species pollution in high altitude alpine snow and ice. J. Phys. IV 2003, 107, 683.
Present century record of mercury species pollution in high altitude alpine snow and ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVamt78%3D&md5=0a63ea1ad4bcd55ce670bc7b7952ccfaCAS |

[280]  C. Zdanowicz, D. Lean, I. Clark, Atmospheric deposition and release of methylmercury in glacially fed catchments of Auyuittuq National Park, Baffin Island, in Synopsis of Research Conducted under the 2008–2009 Northern Contaminants Program (Eds S. Smith, J. Stow, J. Edwards) 2009, pp. 193–199 (Indian and Northern Affairs Canada: Ottawa, ON).

[281]  J. Zheng, D. Fisher, R. Koerner, C. Zdanowicz, C. Bourgeois, G. Hall, P. Pelchat, W. Shotyk, M. Krachler, F. Ke, Temporal studies of atmospheric Hg deposition with ice cores and snow in the Canadian High Arctic, in Synopsis of Research Conducted under the 2008–2009 Northern Contaminants Program (Eds S. Smith, J. Stow, J. Edwards) 2009, pp. 221–225 (Indian and Northern Affairs Canada: Ottawa, ON).

[282]  S. B. Brooks, C. Moore, D. Lew, B. Lefer, G. Huey, D. Tanner, Temperature and sunlight controls of mercury oxidation and deposition atop the Greenland Ice Sheet. Atmos. Chem. Phys. 2011, 11, 8295.
Temperature and sunlight controls of mercury oxidation and deposition atop the Greenland Ice Sheet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyju7rI&md5=915f68e2de488cd876ca4dae2b4495bbCAS |

[283]  H. V. Weiss, M. Koide, E. D. Goldberg, Mercury in a Greenland Ice Sheet: evidence of recent input by man. Science 1971, 174, 692.
Mercury in a Greenland Ice Sheet: evidence of recent input by man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XhslGqsQ%3D%3D&md5=e17972dce5463e2bf9e9cdeb78c85ffbCAS |

[284]  T. A. Jackson, Long-range atmospheric transport of mercury to ecosystems, and the importance of anthropogenic emissions – a critical review and evaluation of the published evidence. Environ. Rev. 1997, 5, 99.
Long-range atmospheric transport of mercury to ecosystems, and the importance of anthropogenic emissions – a critical review and evaluation of the published evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVansrc%3D&md5=154c7fd0868c5b5c23486126331f66edCAS |

[285]  M. B. Dyurgerov, M. F. Meier, Glaciers and the changing Earth system: a 2004 snapshot. Occasional paper 58 2005 (Institute of Arctic and Alpine Research, University of Colorado: Boulder, CO).

[286]  D. B. Bahr, M. Dyurgerov, M. F. Meier, Sea-level rise from glaciers and ice caps: a lower bound. Geophys. Res. Lett. 2009, 36, L03501.
Sea-level rise from glaciers and ice caps: a lower bound.Crossref | GoogleScholarGoogle Scholar |

[287]  A. S. Gardner, G. Mohold, B. Wouter, G. J. Wolken, D. O. Burgess, M. J. Sharp, G. Cogley, C. Braun, C. Labine, Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. Nature 2011, 473, 357.
Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFeisbs%3D&md5=8c13ea41ac35517d019e46f26328484eCAS |

[288]  M. Sharp, D. Burgess, J. G. Cogley, M. Ecclestone, C. Labine, G. J. Wolken, Extreme melt on Canada’s Arctic ice caps in the 21st century. Geophys. Res. Lett. 2011, 38, L11501.
Extreme melt on Canada’s Arctic ice caps in the 21st century.Crossref | GoogleScholarGoogle Scholar |

[289]  D. S. Arndt, J. Blunden, M. O. Baringer, State of the climate in 2010. B. Am. Meteorol. Soc. 2011, 92, S17.

[290]  J. Sommar, I. Wangberg, T. Berg, K. Gardfeldt, J. Munthe, A. Richeter, A. Urba, F. Wittrock, W. H. Schroeder, Circumpolar transport and air-surface exchange of atmospheric mercury at Ny-Alesund (79°N), Svalbard, spring 2002. Atmos. Chem. Phys. Discus. 2004, 4, 1727.
Circumpolar transport and air-surface exchange of atmospheric mercury at Ny-Alesund (79°N), Svalbard, spring 2002.Crossref | GoogleScholarGoogle Scholar |

[291]  C. P. Ferrari, C. Padova, X. Faïn, P. A. Gauchard, A. Dommergue, K. Aspmo, T. Berg, W. Cairns, C. Barbante, P. Cescon, L. Kaleschke, A. Richter, F. Wittrock, C. Boutron, Atmospheric mercury depletion event stuy in Ny-Alesund (Svalbard) in spring 2005. Deposition and transformation of Hg in surface snow during springtime. Sci. Total Environ. 2008, 397, 167.
Atmospheric mercury depletion event stuy in Ny-Alesund (Svalbard) in spring 2005. Deposition and transformation of Hg in surface snow during springtime.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVSltr0%3D&md5=54066885080a74b1fb6b140cfd9d3682CAS |

[292]  N. Lahoutifard, M. Sparling, D. Lean, Total and methyl mercury patterns in Arctic snow during springtime at Resolute, Nunavut, Canada. Atmos. Environ. 2005, 39, 7597.
Total and methyl mercury patterns in Arctic snow during springtime at Resolute, Nunavut, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1agsLvL&md5=577c38978764ce932ca7a6d7e35e09deCAS |

[293]  A. J. Poulain, J. D. Lalonde, M. Amyot, J. A. Shead, F. Raofie, P. A. Ariya, Redox transformations of mercury in an Arctic snowpack at springtime. Atmos. Environ. 2004, 38, 6763.
Redox transformations of mercury in an Arctic snowpack at springtime.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps1OksrY%3D&md5=89c1d961361fc20705375736c1c0e726CAS |