Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Acidification increases mercury uptake by a freshwater alga, Chlamydomonas reinhardtii

Séverine Le Faucheur A B , Yvan Tremblay A C , Claude Fortin A and Peter G. C. Campbell A D
+ Author Affiliations
- Author Affiliations

A Institut national de la Recherche scientifique, INRS Eau Terre et Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada.

B Present address: Institut Forel, Université de Genève, 10 route de Suisse, CH-1290 Versoix, Switzerland.

C Present address: Bureau d’audiences publiques sur l’environnement, 575 rue Saint-Amable, Québec, QC, G1R 6A6, Canada.

D Corresponding author. Email: peter.campbell@ete.inrs.ca

Environmental Chemistry 8(6) 612-622 https://doi.org/10.1071/EN11006
Submitted: 13 January 2011  Accepted: 25 August 2011   Published: 17 November 2011

Environmental context. Mercury is classified as a priority pollutant owing to the biomagnification of its methylated species along food chains and the consequent effects on top consumers. The pH of natural waters affects many of the biogeochemical processes that control mercury accumulation in aquatic organisms. Here, evidence is presented that pH affects mercury uptake by unicellular algae, primary producers in aquatic food chains, thereby providing a new example of the pervasive influence of pH on the mercury biogeochemical cycle.

Abstract. We have examined the influence of pH on HgII uptake (mainly in the form of the lipophilic complex HgCl2) by a green, unicellular alga, Chlamydomonas reinhardtii. Uptake of the dichloro complex increased by a factor of 1.6 to 2 when the pH was lowered from 6.5 to 5.5, an unexpected result given that the intracellular hydrolysis rate of fluorescein diacetate (FDA), used as a probe for the passive diffusion of lipophilic solutes through algal membranes, decreased in the studied alga under similar conditions. Several mechanisms were explored to explain the enhanced uptake at pH 5.5, including pH-induced changes in cell surface binding of Hg or in Hg loss rates from cells, but none of them gave completely satisfactory explanations. The present findings imply that inorganic HgII in aqueous solution behaves, in terms of uptake, neither as a lipophilic complex (the uptake of which would be expected to decrease with acidification because of algal membrane packing), nor as a cationic metal (the transport of which by facilitated transport would be expected to diminish with increasing proton concentration because of metal–proton competition at the transporter binding sites). Mercury uptake by algae seems rather to be stimulated by proton addition.

Additional keywords: cell membrane, lipophilic metal complex, pH, unicellular green algae, uptake rate.


References

[1]  R. P. Mason, J. R. Reinfelder, F. M. M. Morel, Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ. Sci. Technol. 1996, 30, 1835.
Uptake, toxicity, and trophic transfer of mercury in a coastal diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFansL4%3D&md5=c90111e922a78d22fef0d1967aa2d07bCAS |

[2]  N. M. Lawson, R. P. Mason, Accumulation of mercury in estuarine food chains. Biogeochem. 1998, 40, 235.
Accumulation of mercury in estuarine food chains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlakurc%3D&md5=bc0d1d672ea8aacab7ed4a1d891b80ccCAS |

[3]  A. C. Luengen, A. R. Flegal, Role of phytoplankton in mercury cycling in the San Francisco Bay estuary. Limnol. Oceanogr. 2009, 54, 23.
Role of phytoplankton in mercury cycling in the San Francisco Bay estuary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrsbnN&md5=bdd70128f56c00441125928431ada388CAS |

[4]  L. E. Heimbürger, D. Cossa, J. C. Marty, C. Migon, B. Averty, A. Dufour, J. Ras, Methyl mercury distributions in relation to the presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, north-western Mediterranean). Geochim. Cosmochim. Acta 2010, 74, 5549.
Methyl mercury distributions in relation to the presence of nano- and picophytoplankton in an oceanic water column (Ligurian Sea, north-western Mediterranean).Crossref | GoogleScholarGoogle Scholar |

[5]  D. J. A. Kelly, K. Budd, D. D. Lefebvre, Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae. Arch. Microbiol. 2007, 187, 45.
Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCksbzF&md5=3a7ff9155836e47660da6de54b45c377CAS |

[6]  E. Morelli, R. Ferrara, B. Bellini, F. Dini, G. Di Giuseppe, L. Fantozzi, Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure. Sci. Total Environ. 2009, 408, 286.
Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWqsbvN&md5=7eff755004b0470631007a602995b91fCAS |

[7]  C. J. Watras, N. S. Bloom, Mercury and methylmercury in individual zooplankton: implications for bioaccumulation. Limnol. Oceanogr. 1992, 37, 1313.
Mercury and methylmercury in individual zooplankton: implications for bioaccumulation.Crossref | GoogleScholarGoogle Scholar |

[8]  M. D. Rennie, N. C. Collins, C. F. Purchase, A. Tremblay, Predictive models of benthic invertebrate methylmercury in Ontario and Quebec lakes. Can. J. Fish. Aquat. Sci. 2005, 62, 2770.
Predictive models of benthic invertebrate methylmercury in Ontario and Quebec lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlOruw%3D%3D&md5=c1a30b0288aa7632df90c1491c86593aCAS |

[9]  P. Andersson, H. Borg, P. Kärrhage, Mercury in fish muscle in acidified and limed lakes. Water Air Soil Pollut. 1995, 80, 889.
Mercury in fish muscle in acidified and limed lakes.Crossref | GoogleScholarGoogle Scholar |

[10]  C. J. Watras, R. C. Back, S. Halvorsen, R. J. M. Hudson, K. A. Morrison, S. P. Wente, Bioaccumulation of mercury in pelagic freshwater food webs. Sci. Total Environ. 1998, 219, 183.
Bioaccumulation of mercury in pelagic freshwater food webs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrk%3D&md5=05cc7ad450612ef8e5ab47905538e223CAS |

[11]  M. R. Winfrey, J. W. M. Rudd, Environmental factors affecting the formation of methylmercury in low pH lakes. Environ. Toxicol. Chem. 1990, 9, 853.
Environmental factors affecting the formation of methylmercury in low pH lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltVaqsrg%3D&md5=ba3b17fa923d6fba7012efd1cfa3a1beCAS |

[12]  C. J. Watras, K. A. Morrison, O. Regnell, T. K. Kratz, The methylmercury cycle in Little Rock Lake during experimental acidification and recovery. Limnol. Oceanogr. 2006, 51, 257.
The methylmercury cycle in Little Rock Lake during experimental acidification and recovery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFaqtLs%3D&md5=695fcc8f1fe837f01afcc5d3bfed7793CAS |

[13]  C. A. Kelly, J. W. M. Rudd, M. H. Holoka, Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ. Sci. Technol. 2003, 37, 2941.
Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVKru78%3D&md5=a817394321ed47b734433cd5e288e29bCAS |

[14]  D. M. Ward, K. H. Nislow, C. Y. Chen, C. L. Folt, Rapid, efficient growth reduces mercury concentrations in stream-dwelling Atlantic salmon. Trans. Am. Fish. Soc. 2010, 139, 1.
Rapid, efficient growth reduces mercury concentrations in stream-dwelling Atlantic salmon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslOksLw%3D&md5=1b80ec3118f9ef9555c050a045b8e18cCAS |

[15]  G. R. Golding, R. Sparling, C. A. Kelly, Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Appl. Environ. Microbiol. 2008, 74, 667.
Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVSqurY%3D&md5=36dae0c62f9a8e63c202863800605b6aCAS |

[16]  P. G. C. Campbell, P. M. Stokes, Acidification and toxicity of metals to aquatic biota. Can. J. Fish. Aquat. Sci. 1985, 42, 2034.
Acidification and toxicity of metals to aquatic biota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xotlelsw%3D%3D&md5=e8564f69e864eb567089fdfd3c6913ddCAS |

[17]  A. Boullemant, M. Lavoie, C. Fortin, P. G. C. Campbell, Uptake of hydrophobic metal complexes by three freshwater algae: unexpected influence of pH. Environ. Sci. Technol. 2009, 43, 3308.
Uptake of hydrophobic metal complexes by three freshwater algae: unexpected influence of pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFemtbg%3D&md5=711fa3bb2fd6fded637ae3bf1952389aCAS |

[18]  E. Bienvenue, A. Boudou, J. P. Desmazes, C. Gavach, D. Georgescauld, J. Sandeaux, R. Sandeaux, P. Seta, Transport of mercury compounds across bimolecular lipid membranes: effect of lipid composition, pH and chloride concentration. Chem. Biol. Interact. 1984, 48, 91.
Transport of mercury compounds across bimolecular lipid membranes: effect of lipid composition, pH and chloride concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsFajur8%3D&md5=a58a083aa0c57f7ef502d046e50da16bCAS |

[19]  J. Gutknecht, Inorganic mercury (Hg2+) transport through lipid bi-layer membranes. J. Membr. Biol. 1981, 61, 61.
Inorganic mercury (Hg2+) transport through lipid bi-layer membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXls1Cjsrc%3D&md5=91dd1a900c969b002224f7af07b79501CAS |

[20]  J. Dupont, Quebec lake survey: I. Statistical assessment of surface water quality. Water Air Soil Pollut. 1992, 61, 107.
Quebec lake survey: I. Statistical assessment of surface water quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtlGrtr4%3D&md5=3144fa72e5c220bf77d6677b9a9f3c09CAS |

[21]  S. M. Macfie, Y. Tarmohamed, P. M. Welbourn, Effects of cadmium, cobalt, copper, and nickel on growth of the green alga Chlamydomonas reinhardtii: the influences of the cell wall and pH. Arch. Environ. Contam. Toxicol. 1994, 27, 454.
Effects of cadmium, cobalt, copper, and nickel on growth of the green alga Chlamydomonas reinhardtii: the influences of the cell wall and pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvFCltLs%3D&md5=320acdebc36d4343604d48dd98d716eaCAS |

[22]  W. D. Schecher, D. McAvoy, MINEQL+: A Chemical Equilibrium Modeling System 2001 (Environmental Research Software: Hallowell, ME).

[23]  K. J. Powell, P. L. Brown, R. H. Byrne, T. Gadja, G. Hefter, S. Sjöberg, H. Wanner, Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg2+-Cl–, OH–, CO32–, SO42–, and PO43– aqueous systems (IUPAC report). Pure Appl. Chem. 2005, 77, 739.
Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg2+-Cl, OH, CO32–, SO42–, and PO43– aqueous systems (IUPAC report).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Krs70%3D&md5=669f1d1cf6abbb5668a000414cc82fffCAS |

[24]  B. Vigneault, A. Percot, M. Lafleur, P. G. C. Campbell, Permeability changes in model and phytoplankton membranes in the presence of aquatic substances. Environ. Sci. Technol. 2000, 34, 3907.
Permeability changes in model and phytoplankton membranes in the presence of aquatic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVSls7k%3D&md5=48cb3d1e7136fdecb6f6d1e826a0b0b3CAS |

[25]  IUPAC Stability Constants Database 2001 (Academic Software: Otley, Yorkshire, UK). Available at www.acadsoft.co.uk [Verified 29 September 2011].

[26]  N. M. Franklin, M. S. Adams, J. L. Stauber, R. P. Lim, Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch. Environ. Contam. Toxicol. 2001, 40, 469.
Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVGht7g%3D&md5=20960f51dd3e9c2b436903b6e1f9e143CAS |

[27]  P. G. C. Campbell, O. Errecalde, C. Fortin, W. R. Hiriart-Baer, B. Vigneault, Metal bioavailability to phytoplankton – applicability of the biotic ligand model. Comp. Biochem. Phys. C 2002, 133, 189.

[28]  C. S. Hassler, V. I. Slaveykova, K. J. Wilkinson, Discriminating between intra- and extracellular metals using chemical extractions. Limnol. Oceanogr. Methods 2004, 2, 237.
Discriminating between intra- and extracellular metals using chemical extractions.Crossref | GoogleScholarGoogle Scholar |

[29]  P. R. Gorski, D. E. Armstrong, J. P. Hurley, M. M. Shafer, Speciation of aqueous methylmercury influences uptake by a freshwater alga (Selenastrum capricornutum). Environ. Toxicol. Chem. 2006, 25, 534.
Speciation of aqueous methylmercury influences uptake by a freshwater alga (Selenastrum capricornutum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlCqtw%3D%3D&md5=ac0bc52e28fed433fa0c760efae21644CAS |

[30]  H. A. Moye, C. J. Miles, E. J. Phlips, B. Sargent, K. K. Merritt, Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water. Environ. Sci. Technol. 2002, 36, 3550.
Kinetics and uptake mechanisms for monomethylmercury between freshwater algae and water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFGis74%3D&md5=c7801884fa496816f702201ce988b292CAS |

[31]  Y. J. Shieh, J. Barber, Uptake of mercury by Chlorella and its effect on potassium regulation. Planta 1973, 109, 49.
Uptake of mercury by Chlorella and its effect on potassium regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltlGqtg%3D%3D&md5=069693cb2390512019829d9f2dc5f5c8CAS |

[32]  J. Huisman, H. J. G. Ten Hoopen, A. Fuchs, The effect of temperature upon the toxicity of mercuric chloride to Scenedesmus acutus. Environ. Pollut. 1980, 22, 133.
The effect of temperature upon the toxicity of mercuric chloride to Scenedesmus acutus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXltVygtr8%3D&md5=9ca614d01d601b0a15db90f2e682ee69CAS |

[33]  H. Zhong, W.-X. Wang, Controls of dissolved organic matter and chloride on mercury uptake by a marine diatom. Environ. Sci. Technol. 2009, 43, 8998.
Controls of dissolved organic matter and chloride on mercury uptake by a marine diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlagt7rK&md5=f6b15c8ce3d426390c3a839656803f3bCAS |

[34]  P. C. Pickhardt, N. S. Fisher, Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ. Sci. Technol. 2007, 41, 125.
Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCit7nN&md5=69baf00226c56ffd27bbd8b90f74ab72CAS |

[35]  K. J. Wilkinson, J. Buffle, Critical evaluation of physicochemical parameters and processes for modelling the biological uptake of trace metals in environmental (aquatic) systems, in Physicochemical Kinetics and Transport at Biointerfaces (Eds H. P. van Leeuwen, W. Koster) 2004, pp. 445–533 (Wiley: Chichester, UK).

[36]  J. Galceran, H. P. Van Leeuwen, Dynamics of biouptake processes: the role of transport, adsorption and internalisation, in Physicochemical Kinetics and Transport at Biointerfaces (Eds H. P. Van Leeuwen, W. Köster) 2004, pp. 147–203 (Wiley: Chichester, UK).

[37]  J. Crank, The Mathematics of Diffusion 1975 (Oxford University Press: Oxford, UK).

[38]  M. Whitfield, D. R. Turner, Critical assessment of the relationship between biological thermodynamic and electrochemical availability, in Chemical Modeling in Aqueous Systems – Speciation, Sorption, Solubility and Kinetics (Ed. E. A. Jenne) ACS Symposium Series 93 1979, pp. 657–80 (American Chemical Society: Washington, DC).

[39]  R. Mills, V. M. M. Lobo, Self Diffusion in Electrolyte Solutions: A Critical Examination of Data Compiled from the Literature 1989 (Elsevier Science Publishers B.V.: Amsterdam).

[40]  J. Klinck, M. Dunbar, S. Brown, J. Nichols, A. Winter, C. Hughes, R. C. Playle, Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2005, 72, 161.
Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVequ7c%3D&md5=f9f77342150abb110cfe1fd751d6379aCAS |

[41]  G. R. Golding, C. A. Kelly, R. Sparling, P. C. Loewen, J. W. M. Rudd, T. Barkay, Evidence for facilitated uptake of Hg(II) by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions. Limnol. Oceanogr. 2002, 47, 96775.
Evidence for facilitated uptake of Hg(II) by Vibrio anguillarum and Escherichia coli under anaerobic and aerobic conditions.Crossref | GoogleScholarGoogle Scholar |

[42]  S. Andres, J. M. Laporte, R. P. Mason, Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes sapidus). Aquat. Toxicol. 2002, 56, 303.
Mercury accumulation and flux across the gills and the intestine of the blue crab (Callinectes sapidus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSktrw%3D&md5=5f24f1fd6d88f4da7f08dd7060aae3c6CAS |

[43]  D. M. Di Toro, H. E. Allen, H. L. Bergman, J. S. Meyer, P. Paquin, R. C. Santore, Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ. Toxicol. Chem. 2001, 20, 2383.
Biotic ligand model of the acute toxicity of metals. 1. Technical basis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWnuw%3D%3D&md5=98ac74875b8364d484a1bf8d1a2dd7c9CAS |

[44]  H. Makui, E. Roig, S. T. Cole, J. D. Helmann, P. Gros, M. F. M. Cellier, Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol. 2000, 35, 1065.
Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVahu7k%3D&md5=3146c786ff498315e35b8e58ab4c2f87CAS |

[45]  H. A. H. Haemig, P. J. Moen, R. J. Brooker, Evidence that highly conserved residues of transmembrane segment 6 of Escherichia coli MntH are important for transport activity. Biochemistry 2010, 49, 4662.
Evidence that highly conserved residues of transmembrane segment 6 of Escherichia coli MntH are important for transport activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFehtbc%3D&md5=db61d264c140fe4f623fdadc8ac3e39dCAS |

[46]  H. Gunshin, B. Mackenzie, U. V. Berger, Y. Gunshin, M. F. Romero, W. F. Boron, S. Nussberger, J. L. Gollan, M. A. Hediger, Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 1997, 388, 482.
Cloning and characterization of a mammalian proton-coupled metal-ion transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltFGqtbY%3D&md5=2369ea92aaaa18abc227bc49025880acCAS |

[47]  A. Rosakis, W. Koster, Divalent metal transport in the green microalga Chlamydomonas reinhardtii is mediated by a protein similar to prokaryotic Nramp homologues. Biometals 2005, 18, 107.
Divalent metal transport in the green microalga Chlamydomonas reinhardtii is mediated by a protein similar to prokaryotic Nramp homologues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlahs78%3D&md5=7438c3ba6b723cb9e00cada3147caee5CAS |

[48]  A. Spacie, J. L. Hamelink, Alternative models for describing the bioconcentration of organics in fish. Environ. Toxicol. Chem. 1982, 1, 309.
Alternative models for describing the bioconcentration of organics in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhsFGqu78%3D&md5=207b69e686d7091a7f6d9a9c1d9af35bCAS |

[49]  G. Howe, S. Merchant, Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii. Plant Physiol. 1992, 98, 127.
Heavy metal-activated synthesis of peptides in Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsVGlt7w%3D&md5=523257cc9f030dab25e30879e1d95a01CAS |

[50]  A. N. Lane, J. E. Burris, Effects of environmental pH on the internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis. Plant Physiol. 1981, 68, 439.
Effects of environmental pH on the internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlt12ltLo%3D&md5=da7b7f76b4778ba9652f6fea4325afdcCAS |