Experimental study and modelling of inorganic Cd2+ speciation in natural waters
Claudia Foti A , Gabriele Lando A , Frank J. Millero B and Silvio Sammartano A CA Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, Viale Ferdinando Stagno d’Alcontres 31, I-98166 Messina (Vill. S. Agata), Italy.
B Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
C Corresponding author. Email: ssammartano@unime.it
Environmental Chemistry 8(3) 320-331 https://doi.org/10.1071/EN10138
Submitted: 10 December 2010 Accepted: 10 March 2011 Published: 22 June 2011
Environmental context. Cadmium(II) is considered as one of the most dangerous pollutants in natural waters. We performed a complete study on the interactions of cadmium(II) with inorganic components of natural waters, by using new experiments and some literature data. The body of results can be considered an improvement in modelling the inorganic speciation of cadmium(II) in natural waters.
Abstract. An analysis of literature data together with new potentiometric and voltammetric studies on the interaction between Cd2+ and the common environmental inorganic ligands, such as OH–, Cl–, F–, CO32– and SO42–, was reported at t = 25°C. New formation constant values for CdCl+, CdCl20, CdCl(OH)0, CdSO40, CdCO30 and CdF+ species at different ionic strengths (0.1 ≤ I ≤ 1 mol L–1) were determined. The cumulative seawater ligand capacity was evaluated by using a model in which synthetic seawater is expressed as a single salt BA, where the major cations (Na+, K+, Ca2+ and Mg2+) are represented by a single cation Bz+ and the anions (Cl– and SO42–) by a single anion Az– (|z| = 1.117). The formation of CdA0.883+ and CdA(OH)0.117– species was proposed and formation constants are reported at different salinities (5 ≤ S ≤ 45). The ionic strength dependence of the stability constants was studied by means of Pitzer and SIT (Specific ion Interaction Theory) equations.
Additional keywords: cadmium(II), hydrolysis, inorganic ligands, ionic strength dependence.
References
[1] F. M. M. Morel, J. G. Hering, Principles and Applications of Aquatic Chemistry 1993 (Wiley: New York).[2] A. Tessier, D. R. Turner, Metal Speciation and Bioavailability in Aquatic Systems 1995 (Wiley: Chichester, UK).
[3] W. Stumm, J. Morgan, Aquatic Chemistry 1996 (Wiley: New York).
[4] R. Cornelis, H. Crews, J. Caruso, K. G. Heumann, Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine & Occupational Health 2005 (Wiley: Chichester, UK).
[5] M. Sadiq, Toxic Metal Chemistry in Marine Environments 1992 (Marcel Dekker: New York).
[6] R. H. Byrne, Speciation in seawater, in Chemical Speciation in the Environment (Eds A. M. Ure, C. M. Davidson) 2002, pp. 322–357 (Blackwell Science Ltd: Oxford, UK).
[7] M. Filella, R. M. Town, J. Buffle, Speciation in freshwaters, in Chemical Speciation in the Environment (Eds A. M. Ure, C. M. Davidson) 2002, pp. 188–236 (Blackwell Science Ltd: Oxford, UK).
[8] M. Stoeppler, Cadmium, in Metals and their Compounds in the Environment: Occurrence, Analysis, and Biological Relevance (Ed. E. Merian) 1991, pp. 803–851 (VCH: Weinheim).
[9] K. Gunther, B. Kastenholz, Speciation of Cadmium in the Environment and Food, in Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine & Occupational Health (Eds R. Cornelis, H. Crews, J. Caruso, K. G. Heumann) 2005, pp. 94–106 (Wiley: Chichester, UK).
[10] C. De Stefano, C. Foti, A. Gianguzza, S. Sammartano, The single salt approximation for the major components of seawater: association and acid–base properties. Chem. Spec. Bioavail. 1998, 10, 27.
| The single salt approximation for the major components of seawater: association and acid–base properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFaqsb8%3D&md5=ee0f842aa71e87e05b1c9c87c05ce418CAS |
[11] C. De Stefano, C. Foti, A. Gianguzza, D. Piazzese, S. Sammartano, Binding ability of inorganic major components of seawater towards some classes of ligands, metals and organometallic cations, in Chemistry of Marine Waters and Sediments (Eds A. Gianguzza, E. Pelizzetti, S. Sammartano) 2002, pp. 221–261 (Springer-Verlag: Berlin).
[12] P. G. Daniele, C. Foti, A. Gianguzza, E. Prenesti, S. Sammartano, Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord. Chem. Rev. 2008, 252, 1093.
| Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvVGkt7g%3D&md5=e657797ee16741683edd83370059164fCAS |
[13] H. A. Flaschka, EDTA titration 1959 (Pergamon Press: London).
[14] C. De Stefano, C. Foti, S. Sammartano, A. Gianguzza, C. Rigano, Equilibrium Studies in Natural Fluids. Use of Synthetic Seawater and Other Media as Background Salts. Ann. Chim.–Rome 1994, 84, 159.
| 1:CAS:528:DyaK2cXlsVWisbg%3D&md5=77c4432fc431aa09ff7e24d241315223CAS |
[15] C. De Stefano, S. Sammartano, P. Mineo, C. Rigano, Computer Tools for the Speciation of Natural Fluids, in Marine Chemistry – An Environmental Analytical Chemistry Approach (Eds A. Gianguzza, E. Pelizzetti, S. Sammartano) 1997, pp. 71–83 (Kluwer Academic Publishers: Amsterdam).
[16] I. Cukrowski, R. D. Hancock, R. C. Luckay, Formation constant calculation for non-labile complexes based on a labile part of the metal–ligand system. A differential pulse polarographic study at fixed ligand to metal ratio and varied pH: application to polarographically inactive complexes. Anal. Chim. Acta 1996, 319, 39.
| Formation constant calculation for non-labile complexes based on a labile part of the metal–ligand system. A differential pulse polarographic study at fixed ligand to metal ratio and varied pH: application to polarographically inactive complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnvFCgtQ%3D%3D&md5=a9f5a3b19881ee6e06574e8824d69e81CAS |
[17] I. Cukrowski, M. Adsetts, Experimental and calculated complex formation curves for a labile metal–ligand system. A differential pulse polarographic study of the PbII-(N,N,N′,N′- tetramethylethylenediamine)-OH system at fixed ligand to metal ratio and varied pH. J. Electroanal. Chem. 1997, 429, 129.
| Experimental and calculated complex formation curves for a labile metal–ligand system. A differential pulse polarographic study of the PbII-(N,N,N′,N′- tetramethylethylenediamine)-OH system at fixed ligand to metal ratio and varied pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlGjurk%3D&md5=e7734f9cc302d29a8a5f56efb1f34109CAS |
[18] C. F. Baes, R. E. Mesmer, The Hydrolysis of Cations 1976 (Wiley: New York).
[19] G. Biedermann, L. Ciavatta, Studies on the hydrolysis of metal ions. Part 41. The hydrolysis of the Cadmium ion, Cd2+. Acta Chem. Scand. 1962, 16, 2221.
| Studies on the hydrolysis of metal ions. Part 41. The hydrolysis of the Cadmium ion, Cd2+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjslyktg%3D%3D&md5=56bf0505041289f5b79f6b025e734b36CAS |
[20] D. Dyrssen, P. Lumme, Studies on the hydrolysis of metal ion 40. A liquid distribution study of the hydrolysis of Cd2+. Acta Chem. Scand. 1962, 16, 1785.
| Studies on the hydrolysis of metal ion 40. A liquid distribution study of the hydrolysis of Cd2+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXitlOqsA%3D%3D&md5=7d2e212032876b63bdbfa287f40cfedcCAS |
[21] A. E. Martell, R. M. Smith, R. J. Motekaitis, Critically Selected Stability Constants of Metal Complexes. National Institute of Standard and Technology, NIST, PC-based Database, Gaithersburg, 2004. Available at http://www.nist.gov/srd/nist46.cfm [Verified 15 April 2011].
[22] L. Pettit, K. J. Powell, The IUPAC Stability Constants Database, Academic Software, 2001. Available at http://www.acadsoft.co.uk/ [Verified15 April 2011].
[23] P. M. May, K. Murray, Database of chemical reactions designed to achieve thermodynamic consistency automatically. J. Chem. Eng. Data 2001, 46, 1035.
| Database of chemical reactions designed to achieve thermodynamic consistency automatically.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtl2kt7k%3D&md5=5d818d1716023be9447b59d264a8befdCAS |
[24] A. De Robertis, C. De Stefano, C. Foti, A. Gianguzza, S. Sammartano, G. Signorino, Models of natural fluids: the network of chemical interactions. Ann. Chim.–Rome 1996, 86, 539.
| 1:CAS:528:DyaK2sXhtVyktbo%3D&md5=4388a969e00e5914f7b0395590c12dd4CAS |
[25] C. M. M. Machado, I. Cukrowski, H. M. V. M. Soares, Complex formation in the region of metal hydrolysis and M(OH)2 precipitation. A glass electrode potentiometric and polarographic study of Cd–(AMPSO)x–(OH)y and Zn–(AMPSO)x–(OH)y systems. Electroanalysis 2006, 18, 719.
| Complex formation in the region of metal hydrolysis and M(OH)2 precipitation. A glass electrode potentiometric and polarographic study of Cd–(AMPSO)x–(OH)y and Zn–(AMPSO)x–(OH)y systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Sgt7o%3D&md5=b424ed659f00a24519ffd79b7ef86b24CAS |
[26] D. Dyrssen, M. Wedborg, Equilibrium calculations of the speciation of elements in sea water, in The Sea (Ed. R. N. Goldberg) 1973, pp. 181–195 (Wiley: New York).
[27] J. Gardiner, The chemistry of cadmium in natural water. I. Study of cadmium complex formation using the cadmium specific-ion electrode. Water Res. 1974, 8, 23.
| The chemistry of cadmium in natural water. I. Study of cadmium complex formation using the cadmium specific-ion electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXoslaltA%3D%3D&md5=a228971130b0b587353d9fca29a76d08CAS |
[28] D. Rai, A. R. Felmy, D. A. Moore, Thermodynamic model for aqueous Cd2+–CO32– ionic interactions in high-ionic-strength carbonate solutions, and the solubility product of crystalline CdCO3. J. Solution Chem. 1991, 20, 1169.
| Thermodynamic model for aqueous Cd2+–CO32– ionic interactions in high-ionic-strength carbonate solutions, and the solubility product of crystalline CdCO3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmvVGguw%3D%3D&md5=5833e4cc198e526ee730479aa6bbbeb1CAS |
[29] C. Fouillac, A. Criaud, Carbonate and bicarbonate trace metal complexes: critical reevaluation of stability constants. Geochem. J. 1984, 18, 297.
| 1:CAS:528:DyaL2MXitVKqt7w%3D&md5=0d86687fb1802bcf66cd2313b3df3172CAS |
[30] A. M. Bond, T. A. O’Donnell, Evaluation of stability constants of metal ion–fluoride complexes by the specific fluoride ion electrode. J. Electroanal. Chem. 1970, 26, 137.
| Evaluation of stability constants of metal ion–fluoride complexes by the specific fluoride ion electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktVOru78%3D&md5=b1c18b9350af23b35991ec9fd009e51fCAS |
[31] A. De Robertis, C. De Stefano, C. Foti, A. Gianguzza, D. Piazzese, S. Sammartano, Protonation constants and association of polycarboxylic ligands with the major components of seawater. J. Chem. Eng. Data 2000, 45, 996.
| Protonation constants and association of polycarboxylic ligands with the major components of seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1amsbY%3D&md5=4fce53f6b76b880b4392ae9f3712aab4CAS |
[32] C. De Stefano, C. Foti, A. Gianguzza, S. Sammartano, Speciation of low molecular weight ligands in natural fluids: protonation constants and association of open chain polyamines with the major components of seawater. Anal. Chim. Acta 2000, 418, 43.
| Speciation of low molecular weight ligands in natural fluids: protonation constants and association of open chain polyamines with the major components of seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkslWltrg%3D&md5=621c33fbab48c8b33e54b9d72e78d19fCAS |
[33] C. De Stefano, C. Foti, A. Gianguzza, S. Sammartano, The interaction of amino acids with the major constituents of natural waters at different ionic strengths. Mar. Chem. 2000, 72, 61.
| The interaction of amino acids with the major constituents of natural waters at different ionic strengths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVamsbk%3D&md5=4bd693563b805919dd2b1e92e6da5ea5CAS |
[34] C. Foti, A. Gianguzza, D. Milea, F. J. Millero, S. Sammartano, Speciation of trialkyltin(IV) cations in natural fluids. Mar. Chem. 2004, 85, 157.
| Speciation of trialkyltin(IV) cations in natural fluids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFGjug%3D%3D&md5=ba198f27ab89139c9d046717ff105cf6CAS |
[35] C. Foti, A. Gianguzza, D. Milea, S. Sammartano, Hydrolysis and chemical speciation of (C2H5)2Sn2+, (C2H5)3Sn+ and (C3H7)3Sn+ in aqueous media simulating the major composition of natural waters. Appl. Organomet. Chem. 2002, 16, 34.
| Hydrolysis and chemical speciation of (C2H5)2Sn2+, (C2H5)3Sn+ and (C3H7)3Sn+ in aqueous media simulating the major composition of natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslOguw%3D%3D&md5=1d901bf61efaded2c655bd3d12b139c6CAS |
[36] C. Bretti, M. R. Cigala, F. Crea, S. Sammartano, Mixing effects on the protonation of some polycarboxylates in NaClaq+KClaq at different ionic strengths. Talanta 2007, 72, 1059.
| Mixing effects on the protonation of some polycarboxylates in NaClaq+KClaq at different ionic strengths.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVWntrY%3D&md5=f59d12b12ddcb13f8b395a1a3875d4adCAS | 19071725PubMed |
[37] M. R. Cigala, F. Crea, C. De Stefano, S. Sammartano, Mixing effects on the protonation of polycarboxylates. Protonation of Benzenehexacarboxylate in LiCl–KCl, NaCl–KCl, NaCl–LiCl and LiCl–CsCl aqueous solutions at I = 1 mol L–1 and T = 298.15 K. J. Chem. Eng. Data 2009, 54, 2137.
| Mixing effects on the protonation of polycarboxylates. Protonation of Benzenehexacarboxylate in LiCl–KCl, NaCl–KCl, NaCl–LiCl and LiCl–CsCl aqueous solutions at I = 1 mol L–1 and T = 298.15 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVKlu78%3D&md5=2cf1f6e103b7c84f14babc460c42ff61CAS |
[38] F. J. Millero, Sea water as an electrolyte, in Chemistry of Marine Waters and Sediments (Eds A. Gianguzza, E. Pelizzetti, S. Sammartano) 2002, pp. 3–34 (Springer-Verlag: Berlin).
[39] K. S. Pitzer, Activity Coefficients in Electrolyte Solutions 1991 (CRC Press: Boca Raton, FL).
[40] R. N. Goldberg, Evaluated activity and osmotic coefficients for aqueous solutions: bi-univalent compounds of zinc, cadmium, and ethylene bis(trimethylammonium) chloride and iodide. J. Phys. Chem. Ref. Data 1981, 10, 1.
| Evaluated activity and osmotic coefficients for aqueous solutions: bi-univalent compounds of zinc, cadmium, and ethylene bis(trimethylammonium) chloride and iodide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXktFemur0%3D&md5=8c6d48ec19de4b3258dce29b10b5371aCAS |
[41] R. M. Cigala, F. Crea, C. De Stefano, G. Lando, D. Milea, S. Sammartano, Electrochemical study on the stability of phytate complexes with Cu2+, Pb2+, Zn2+, and Ni2+: a comparison of different techniques. J. Chem. Eng. Data 2010, 55, 4757.
| Electrochemical study on the stability of phytate complexes with Cu2+, Pb2+, Zn2+, and Ni2+: a comparison of different techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslChur8%3D&md5=0dff9720e1a8538329155f83d1aabd7cCAS |
[42] C. De Stefano, G. Lando, D. Milea, A. Pettignano, S. Sammartano, Formation and stability of cadmium(II)/phytate complexes by different electrochemical techniques. Critical analysis of results. J. Solution Chem. 2010, 39, 179.
| Formation and stability of cadmium(II)/phytate complexes by different electrochemical techniques. Critical analysis of results.Crossref | GoogleScholarGoogle Scholar |
[43] J. Buffle, Complexation Reactions in Aquatic Systems 1988 (Ellis Horwood: Chichester, UK).
[44] A. Zirino, S. Yamamoto, A pH dependent model for the chemical speciation of copper, zinc, cadmium and lead in seawater. Limnol. Oceanogr. 1972, 17, 661.
| 1:CAS:528:DyaE3sXht1yhurc%3D&md5=f8fb28f21194485d7d62e11ea559cff5CAS |
[45] S. Ahrland, Metal complexes in seawater, in The Nature of Seawater (Ed. E. N. Goldberg) 1975, pp. 219–244 (Dahelem Conference: Berlin).
[46] T. M. Florence, G. E. Batley, Trace metal species in seawater, 1. Removal of trace metal from seawater by a chelating agent. Talanta 1976, 23, 179.
| Trace metal species in seawater, 1. Removal of trace metal from seawater by a chelating agent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xkt1GhsLw%3D&md5=da768cd1654be336f098ce5f93b85379CAS | 18961831PubMed |
[47] M. Sadiq, Thermodynamic marine chemistry of cadmium and its comparison with published work. Mar. Chem. 1989, 10, 1057.
| 1:CAS:528:DyaK3cXhtVCgtL8%3D&md5=76f6d74c18c377745eeedf880d6721c3CAS |
[48] R. H. Byrne, L. R. Kump, K. J. Cantrell, The influence of temperature and pH on trace metal speciation in seawater. Mar. Chem. 1988, 25, 163.
| The influence of temperature and pH on trace metal speciation in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlWqtg%3D%3D&md5=10381eab2a60fc6ad3bda65b91d99834CAS |
[49] F. J. Millero, D. J. Hawke, Ionic interactions of divalent metals in natural waters. Mar. Chem. 1992, 40, 19.
| Ionic interactions of divalent metals in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXoslShtA%3D%3D&md5=c1a1a42beccc43da23d31314b2b8fca8CAS |
[50] Y. Kanekiyo, S. Aizawa, S. Funahashi, Complexation equilibria of oxy-acid–2-amino-2-deoxy-D-gluconic acid–metal(II) ion ternary systems in aqueous solution as studied by potentiometry. Binding characteristics of borate and germanate. Inorg. Chim. Acta 2000, 298, 154.
| Complexation equilibria of oxy-acid–2-amino-2-deoxy-D-gluconic acid–metal(II) ion ternary systems in aqueous solution as studied by potentiometry. Binding characteristics of borate and germanate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslaksg%3D%3D&md5=3be91cca80c8183ba7df158cdf216f90CAS |
[51] S. Chaberek, R. C. Courtney, A. E. Martell, Stability of metal chelates. II. β-hydroxyethyliminodiacetic acid. J. Am. Chem. Soc. 1952, 74, 5057.
| Stability of metal chelates. II. β-hydroxyethyliminodiacetic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXos1Or&md5=d3ba36053f52665b068d01562ed8d49cCAS |
[52] S. Trisak, B. Rode, The complex formation of cadmium(II) with guanosine Inorg. Chim. Acta 1989, 160, 249.
| The complex formation of cadmium(II) with guanosineCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlt1Wqt7c%3D&md5=320a4b406e2b72df66d3f88288f5ad72CAS |
[53] H. Matsui, H. Ohtaki, Ionic equilibria in mixed solvents. XII. Hydrolysis of cadmium(II) ion in dioxane–water and methanol–water mixtures. Bull. Chem. Soc. Jpn. 1977, 50, 1472.
| Ionic equilibria in mixed solvents. XII. Hydrolysis of cadmium(II) ion in dioxane–water and methanol–water mixtures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXksVCqtLo%3D&md5=74b41d1094d40a2bb00bfd78e51943eeCAS |
[54] H. Matsui, H. Ohtaki, A study on the hydrolysis of cadmium ion in aqueous 3M (Li)ClO4 solution. Bull. Chem. Soc. Jpn. 1974, 47, 2603.
| A study on the hydrolysis of cadmium ion in aqueous 3M (Li)ClO4 solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXot1ah&md5=2c26f53a2ec75f1cf6f360e9dd507fc3CAS |
[55] R. Arnek, Thermodynamics of some aqueous hydrolytic species. Ark. Kemi 1970, 32, 55.
| 1:CAS:528:DyaE3cXksVyqt74%3D&md5=c35c9dbef7a0495458900d0daddef570CAS |
[56] R. Arnek, W. Kakolowicz, Thermochemical studies of hydrolytic reactions. 4. A thermochemical study of hydrolysed Cd(ClO4)2 solutions. Acta Chem. Scand. 1967, 21, 2180.
| Thermochemical studies of hydrolytic reactions. 4. A thermochemical study of hydrolysed Cd(ClO4)2 solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXjtlyjtg%3D%3D&md5=ac817513419687a8759f2db558914748CAS |
[57] K. Burkov, L. Garmash, Study of the hydrolysis of cadmium and zinc ions in a medium of 3 mol sodium perchlorate at 60°. Russ. J. Inorg. Chem. 1977, 22, 536.
| 1:CAS:528:DyaE2sXhtFWkurs%3D&md5=06d992217940268653d64e520a189e89CAS |
[58] M. A. Gómez-Nieto, M. D. Luque de Castro, M. Valcarcel, J. L. Cruz Soto, Computer methods for the calculation of complex formation constants by differential pulse polarography: modification to the DeFord–Hume method applicable to quasireversible and irreversible processes. Anal. Chim. Acta 1984, 156, 77.
| Computer methods for the calculation of complex formation constants by differential pulse polarography: modification to the DeFord–Hume method applicable to quasireversible and irreversible processes.Crossref | GoogleScholarGoogle Scholar |
[59] S. D. Brown, B. R. Kowalski, Pseudopolarographic determination of metal complex stability constants in dilute solution by rapid scan anodic stripping voltammetry. Anal. Chem. 1979, 51, 2133.
| Pseudopolarographic determination of metal complex stability constants in dilute solution by rapid scan anodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlvVahtLk%3D&md5=5fcf670a78f3cae704f0bb1424dbd689CAS |
[60] M. Kutuzova, L. Leschinina, Chloride–iodide complexes of cadmium. Russ. J. Inorg. Chem. 1975, 20, 817.
| 1:CAS:528:DyaE2MXhslGqurY%3D&md5=200bba01e2c29045063fe18c5f372d1dCAS |
[61] V. Fedorov, G. Chernikova, M. A. Kuznechikhina, T. I. Kuznetsova, Formation of mixed zinc and cadmium chloride–sulfate and bromide–sulfate complexes in solutions. Russ. J. Inorg. Chem. 1975, 20, 2912.
| 1:CAS:528:DyaE28XltVGntQ%3D%3D&md5=f3074984faa55bcafb475c045140acc9CAS |
[62] M. de Lurdes S. Simoes, M. C. T. A. Vaz, J. J. R. Fraústo da Silva, Stability constants of chloro–complexes of cadmium(ii) in sea-water medium. Talanta 1981, 28, 237.
| Stability constants of chloro–complexes of cadmium(ii) in sea-water medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXltVCjtLw%3D&md5=945c8326f365fe4ef5b13ad98c7e6b4bCAS | 18962906PubMed |
[63] D. De Marco, A. Bellomo, A. De Robertis, Formation and thermodynamic properties of mixed complexes of Cd(II) with SCN2H4 and Cl–, Br–, I– as ligands. J. Inorg. Nucl. Chem. 1981, 43, 137.
| Formation and thermodynamic properties of mixed complexes of Cd(II) with SCN2H4 and Cl–, Br–, I– as ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsVKitbY%3D&md5=4b67eb2b4d1368101e8512a21fc50f4eCAS |
[64] A. Arevalo, J. C. Rodriguez-Placeres, T. Moreno, J. Segura, Polarographic studies of complexes of cadmium with chloride and thiocyanate ions in aqueous medium. J. Electroanal. Chem. 1978, 92, 55.
| Polarographic studies of complexes of cadmium with chloride and thiocyanate ions in aqueous medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXltlKmtLc%3D&md5=332b0ca31128c3d89471dfd49ec440e3CAS |
[65] J. W. Bixler, T. M. Larson, Ion association studies using a chloride ion selective electrode. J. Inorg. Nucl. Chem. 1974, 36, 224.
| Ion association studies using a chloride ion selective electrode.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXhtlOls78%3D&md5=ae5b56488ac1a42b5194eb684ece620aCAS |
[66] I. G. R. Gutz, E. Almeida Neves, Accurate potentiometric measurement of equilibrium constants with an amalgam drop electrode: the cadmium(II)/pyridine and cadmium(II)/chloride systems. J. Electroanal. Chem. 1985, 183, 123.
| Accurate potentiometric measurement of equilibrium constants with an amalgam drop electrode: the cadmium(II)/pyridine and cadmium(II)/chloride systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtlymurs%3D&md5=df7c6fedd7fb36f6c3f77cdcf96daf1eCAS |
[67] V. Prokuev, V. Eintrop, E. Belousov, Polarographic study of the complexation of cadmium(II) in perchlorate–chloride solutions of magnesium and calcium. Russ. J. Inorg. Chem. 1984, 29, 1599.
| 1:CAS:528:DyaL2cXksVChsbY%3D&md5=510f8681cc23c94348721a65da2b70fdCAS |
[68] G. Biederman, J. Lagrange, P. Langrange, Complex formation equilibriums between the cadmium(II) and chlorine(–) ions. Chem. Scr. 1974, 5, 153.
[69] I. Eliezer, A. Moreno, Potentiometric study of mixed cadmium halide complexes in aqueous solution. J. Chem. Eng. Data 1974, 19, 226.
| Potentiometric study of mixed cadmium halide complexes in aqueous solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXlsF2rsb4%3D&md5=2f91075c80ee6b59e041e320280c0e7eCAS |
[70] M. Zelić, M. Branica, Voltammetric study of cadmium complexation in halogenide mixtures of high ionic strength. Electroanalysis 1992, 4, 701.
| Voltammetric study of cadmium complexation in halogenide mixtures of high ionic strength.Crossref | GoogleScholarGoogle Scholar |
[71] I. Pizeta, M. Branica, Computer automation of polarographic analyzer PAR 384B and development of specific implementation software. J. Electroanal. Chem. 1988, 250, 293.
| Computer automation of polarographic analyzer PAR 384B and development of specific implementation software.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlslyqu7w%3D&md5=cd6b5ec09ac36d140daeb4da5557d826CAS |
[72] V. Fedorov, A. Robov, V. Plekhanov, V. V. Kudruk, M. A. Kuznechikhina, G. E. Chernikova, Effect of the ionic strength of a solution on the formation of cadmium nitrate and mixed chloride–nitrate complexes. Russ. J. Inorg. Chem. 1974, 19, 1225.
| 1:CAS:528:DyaE2cXksVahs7o%3D&md5=482fc11608268a97e32438d003d65750CAS |
[73] I. Nagypál, M. T. Beck, Diagrams for complete representation of binary mononuclear complex systems. Talanta 1982, 29, 473.
| Diagrams for complete representation of binary mononuclear complex systems.Crossref | GoogleScholarGoogle Scholar | 18963168PubMed |
[74] H. Bilinski, R. Huston, W. Stumm, Determination of the stability constants of some hydroxo and carbonato complexes of PbII, CuII, CdII and ZnII in dilute solutions by anodic stripping voltammetry and differential pulse polarography. Anal. Chim. Acta 1976, 84, 157.
| Determination of the stability constants of some hydroxo and carbonato complexes of PbII, CuII, CdII and ZnII in dilute solutions by anodic stripping voltammetry and differential pulse polarography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xks12jtrs%3D&md5=f3921f7cedfdb4b4e536b53fd171a1d0CAS |
[75] A. M. Bond, Reversibility of the ZnII→Zn electrode reaction in the application of polarographic theory to the study of the fluoride complexes of zinc. J. Electroanal. Chem. 1969, 20, 109.
| Reversibility of the ZnII→Zn electrode reaction in the application of polarographic theory to the study of the fluoride complexes of zinc.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXisFWrug%3D%3D&md5=925a4d8b9b6a20d147a0da487b3b6d02CAS |
[76] H. E. Hellwege, G. K. Schweitzer, The determination of association constants of aqueous cadmium complexes by a chelate solvent extraction method. J. Inorg. Nucl. Chem. 1965, 27, 99.
| The determination of association constants of aqueous cadmium complexes by a chelate solvent extraction method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXis1Srsg%3D%3D&md5=a0fdcca0745f7b36cd6fe64c19f8a045CAS |
[77] Š. S. Mesarić, D. N. Hume, The formation constants of copper, cadmium, and zinc fluoride complexes. Inorg. Chem. 1963, 2, 1063.
| The formation constants of copper, cadmium, and zinc fluoride complexes.Crossref | GoogleScholarGoogle Scholar |
[78] G. T. Hefter, N. H. Tioh, C. B. Chan, Fluoride complexes of zinc(II) and cadmium(II). Polyhedron 1990, 9, 901.
| Fluoride complexes of zinc(II) and cadmium(II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFaru7w%3D&md5=812803cf82836fe9ea2f29fd1ec368aeCAS |
[79] P. Beutler, K. Christen, H. Gamsiager, Potentiometric study of complex formation in the cadmium(2+)–fluoride ion–water system. Chimia (Aarau) 1976, 30, 104.
| 1:CAS:528:DyaE28XhsFKgurY%3D&md5=fe904bd42397b89c2728e62e6a4d2800CAS |
[80] R. A. Robinson, R. H. Stokes, Electrolyte Solutions 1955 (Butterworths Scientific Publications: London).
[81] N. G. Tsierkezos, I. E. Molinou, Limiting molar conductances and thermodynamic association constants for nickel(II), cadmium(II), magnesium(II), and copper(II) sulfates in mixtures of methanol and water at 293.15 K. J. Chem. Eng. Data 2000, 45, 819.
| Limiting molar conductances and thermodynamic association constants for nickel(II), cadmium(II), magnesium(II), and copper(II) sulfates in mixtures of methanol and water at 293.15 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslKitrc%3D&md5=b410d27112e7e3e8f7e124bca6b6b368CAS |
[82] R. M. Izatt, D. Eatough, J. J. Christensen, C. H. Bartholomew, Calorimetrically determined log K, ΔH°, and ΔS° values for the interaction of sulphate ion with several bi- and ter-valent metal ions. J. Chem. Soc. A 1969, 45, 47.
| Calorimetrically determined log K, ΔH°, and ΔS° values for the interaction of sulphate ion with several bi- and ter-valent metal ions.Crossref | GoogleScholarGoogle Scholar |
[83] P. Jena, B. Prasad, Behavior of bi-bivalent salts in aqueous solutions. I. Cadmium sulfate. J. Indian Chem. Soc. 1962, 39, 33.
| 1:CAS:528:DyaF38XktVSrsr8%3D&md5=630ed0148d7557d0d73d9964a0e10d5dCAS |
[84] T. Aha, A. Ghosh, J. Ghosh, Dissociation constants of cadmium sulfate and disulfato cadmate(2–) at a number of temperatures and the related thermodynamic functions. J. Indian Chem. Soc. 1989, 66, 762.
| 1:CAS:528:DyaK3cXktFaqsL0%3D&md5=95a92af9ef6666f61013b12e3d81d96fCAS |
[85] L. Nyholm, G. Wikmark, Precise polarographic determination of the stability constants of cadmium and lead with oxalate and sulphate. Anal. Chim. Acta 1989, 223, 429.
| Precise polarographic determination of the stability constants of cadmium and lead with oxalate and sulphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmsVWgtrc%3D&md5=db0be9a052901c86445ab671ce90cf1dCAS |
[86] J. Gal, C. Calleri, L. Elegant, M. Azzaro, Basicity of the carbonyl group. VIII. New calorimetric method for determination of equilibrium constants applied to complexation of the carbonyl group by boron trifluoride. Bull. Chim. Soc. Fr. I 1979, I, 311.
[87] F. Becker, R. Grundman, Thermodynamics of ion association in the ionic systems, Cd2+–SO42– and Cu2+–SO42– by continuous thermometric titration. Z. Phys. Chem.–Frankfurt 1969, 66, 137.
| 1:CAS:528:DyaE3cXmslGg&md5=f5f74556e44245c40971ee55b3bf5868CAS |