Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Composition of dissolved organic matter within a lacustrine environment

Margaret V. McCaul A , David Sutton C , André J. Simpson B , Adrian Spence A , David J. McNally B , Brian W. Moran A , Alok Goel D , Brendan O’Connor D , Kris Hart A and Brian P. Kelleher A E
+ Author Affiliations
- Author Affiliations

A School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.

B Department of Chemistry, University of Toronto, Scarborough College, 1265 Military Trail, Toronto, ON, M1C1A4, Canada.

C School of Science, Limerick Institute of Technology, Limerick, Ireland.

D Centre for Bioanalytical Sciences and School of Biotechnology, DCU, Glasnevin, Dublin 9, Ireland.

E Corresponding author. Email: brian.kelleher@dcu.ie

Environmental Chemistry 8(2) 146-154 https://doi.org/10.1071/EN10109
Submitted: 4 October 2010  Accepted: 17 December 2010   Published: 2 May 2011

Journal Compilation © CSIRO Publishing 2011 Open Access CC BY-NC-ND

Environmental context. Freshwater dissolved organic matter is a complex chemical mixture central to many environmental processes, including carbon and nitrogen cycling. Questions remain, however, as to its chemical characteristics, sources and transformation mechanisms. We studied the nature of dissolved organic matter in a lake system and found that it is influenced by anthropogenic activities. Human activities can therefore influence the huge amounts of carbon sequestered in lakes as dissolved organic matter.

Abstract. Freshwater dissolved organic matter (DOM) is a complex mixture of chemical components that are central to many environmental processes, including carbon and nitrogen cycling. However, questions remain as to its chemical characteristics, sources and transformation mechanisms. Here, we employ 1- and 2-D nuclear magnetic resonance (NMR) spectroscopy to investigate the structural components of lacustrine DOM from Ireland, and how it varies within a lake system, as well as to assess potential sources. Major components found, such as carboxyl-rich alicyclic molecules (CRAM) are consistent with those recently identified in marine and freshwater DOM. Lignin-type markers and protein/peptides were identified and vary spatially. Phenylalanine was detected in lake areas influenced by agriculture, whereas it is not detectable where zebra mussels are prominent. The presence of peptidoglycan, lipoproteins, large polymeric carbohydrates and proteinaceous material supports the substantial contribution of material derived from microorganisms. Evidence is provided that peptidoglycan and silicate species may in part originate from soil microbes.

Additional keywords: carboxyl-rich alicyclic molecules, NMR, peptidoglycan.


References

[1]  J. I. Hedges, R. G. Keil, R. Benner, What happens to terrestrial organic matter in the ocean? Org. Geochem. 1997, 27, 195.
What happens to terrestrial organic matter in the ocean?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVektA%3D%3D&md5=46ed4056c34edc962858a6ba71cd0f64CAS |

[2]  R. Benner, B. Benitez-Nelson, K. Kaiser, R. M. W. Amon, Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett. 2004, 31, L05305.
Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean.Crossref | GoogleScholarGoogle Scholar |

[3]  J. I. Hedges, Global biogeochemical cycles – progress and problems. Mar. Chem. 1992, 39, 67.
Global biogeochemical cycles – progress and problems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFOmurY%3D&md5=5153737a53530d313d1680ca2a525343CAS |

[4]  C. T. Chiou, R. L. Malcolm, T. I. Brinton, D. E. Kile, Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic-acids. Environ. Sci. Technol. 1986, 20, 502.
Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic-acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsFGntb8%3D&md5=82f158ab688b30b53bf394b2f1786f25CAS | 19994935PubMed |

[5]  C. D. Keeling, T. P. Whorf, M. Wahlen, J. Van der Plicht, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 1995, 375, 666.
Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFKrtrY%3D&md5=5824bc23dc2ef74c9434411b02621bcbCAS |

[6]  T. Dittmar, J. A. Paeng, Heat-induced molecular signature in marine dissolved organic matter. Nat. Geosci. 2009, 2, 175.
Heat-induced molecular signature in marine dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCgt7s%3D&md5=22ddceaae8afdb45988641155abceb25CAS |

[7]  R. Stone, The invisible hand behind a vast carbon reservoir. Science 2010, 328, 1476.
The invisible hand behind a vast carbon reservoir.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1yru7c%3D&md5=284dfc5251222deee3262d1a2a248407CAS | 20558685PubMed |

[8]  L. A. Cardoza, A. K. Korir, W. H. Otto, C. J. Wurrey, C. K. Larive, Applications of NMR spectroscopy in environmental science. Prog. Nucl. Mag. Res. Sp 2004, 45, 209.
Applications of NMR spectroscopy in environmental science.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVahsrjK&md5=d07d965034e5166f93c2e2e9751a3967CAS |

[9]  A. J. Simpson, Multidimensional solution state NMR of humic substances: a practical guide and review. Soil Sci. 2001, 166, 795.
Multidimensional solution state NMR of humic substances: a practical guide and review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVertr0%3D&md5=f65b1b50171429bdbfaa3a100c52a413CAS |

[10]  N. Hertkorn, A. Kettrup, Molecular level structural analysis of natural organic matter and of humic substances by multinuclear and higher dimensional NMR spectroscopy, in Use of Humates to Remediate Polluted Environments: From Theory to Practice (Eds I. V. Perminova, N. Hertkom, K. Hatfield) 2005, pp. 391–435 (Springer: Dordrecht).

[11]  B. P. Kelleher, A. J. Simpson, Humic substances in soils: are they really chemically distinct? Environ. Sci. Technol. 2006, 40, 4605.
Humic substances in soils: are they really chemically distinct?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVaisrg%3D&md5=7252a08f71cae288d32b1caec2821d1bCAS | 16913113PubMed |

[12]  B. Lam, A. Baer, M. Alaee, B. Lefebvre, A. Moser, A. Williams, A. J. Simpson, Major structural components in freshwater dissolved organic matter. Environ. Sci. Technol. 2007, 41, 8240.
Major structural components in freshwater dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1OhsLfI&md5=fbd605818c422c362ccd1983734e8d33CAS | 18200846PubMed |

[13]  N. Hertkorn, R. Benner, M. Frommberger, P. Schmitt-Kopplin, M. Witt, K. Kaiser, A. Kettrup, J. I. Hedges, Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 2006, 70, 2990.
Characterization of a major refractory component of marine dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFGjurc%3D&md5=3eda8ef3992e1afa104d750b24f73dddCAS |

[14]  A. J. Leenheer, Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ. Sci. Technol. 1981, 15, 578.
Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlvFaju7Y%3D&md5=98deaa98c038d612dab8585eadd7faf3CAS |

[15]  E. M. Thurman, R. L. Malcolm, Preparative isolation of aquatic humic substances. Environ. Sci. Technol. 1981, 15, 463.
Preparative isolation of aquatic humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksV2jsL4%3D&md5=bf88220de0f42105a0fe0bcbad714574CAS |

[16]  J. P. Simjouw, E. C. Minor, K. Mopper, Isolation and characterization of estuarine dissolved organic matter: comparison of ultrafiltration and C18 solid-phase extraction techniques. Mar. Chem. 2005, 96, 219.
Isolation and characterization of estuarine dissolved organic matter: comparison of ultrafiltration and C18 solid-phase extraction techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFGjt7Y%3D&md5=fbb7c1faa411b4ec426e5df3d601dd8fCAS |

[17]  B. Lam, A. J. Simpson, Passive sampler for dissolved organic matter in freshwater environments. Anal. Chem. 2006, 78, 8194.
Passive sampler for dissolved organic matter in freshwater environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSqs7zK&md5=34235a0c8c5a39225834bd6e88bd51e9CAS | 17165807PubMed |

[18]  A. J. Simpson, S. A. Brown, N. M. R. Purge, Effective and easy solvent suppression. J. Magn. Reson. 2005, 175, 340.
Effective and easy solvent suppression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1ygsrY%3D&md5=67f12730c50ea4ae54303eca7e7a36cfCAS | 15964227PubMed |

[19]  D. Wu, A. Chen, C. S. Johnson, An improved diffusion ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson. A 1995, 115, 260.
An improved diffusion ordered spectroscopy experiment incorporating bipolar-gradient pulses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVGht7k%3D&md5=28d633ba0e82d356731b877285874b2fCAS |

[20]  S. J. Joseph, P. Hugenholtz, P. Sangwan, C. A. Osborne, P. H. Janssen, Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 2003, 69, 7210.
Laboratory cultivation of widespread and previously uncultured soil bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFClsrY%3D&md5=216e5f62f1fe32924379c39e3c00c136CAS | 14660368PubMed |

[21]  P. H. Janssen, P. S. Yates, B. E. Grinton, P. M. Taylor, M. Sait, Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 2002, 68, 2391.
Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFGqtLo%3D&md5=e4c64113d5b38727d0c866a448c219aeCAS | 11976113PubMed |

[22]  B. P. Kelleher, M. J. Simpson, A. J. Simpson, Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy. Geochim. Cosmochim. Acta 2006, 70, 4080.
Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVejsro%3D&md5=1db0120cd8113a9da1cd623f86b98595CAS |

[23]  A. J. Simpson, G. Song, E. Smith, B. Lam, E. H. Novotny, M. H. B. Hayes, Unraveling the structural components of soil humin by use of solution-state Nuclear Magnetic Resonance Spectroscopy. Environ. Sci. Technol. 2007, 41, 876.
Unraveling the structural components of soil humin by use of solution-state Nuclear Magnetic Resonance Spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWmu7%2FE&md5=d735fc3527a93a777b85974d7346a4cdCAS | 17328197PubMed |

[24]  B. G. Pautler, A. J. Simpson, D. J. McNally, S. F. Lamoureux, M. J. Simpson, Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ. Sci. Technol. 2010, 44, 4076.
Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVakt7k%3D&md5=9823a26914c4a18f40139b3e37274564CAS | 20459054PubMed |

[25]  A. J. Simpson, W. L. Kingery, P. G. Hatcher, The identification of plant derived structures in humic materials using three dimensional NMR spectroscopy. Environ. Sci. Technol. 2003, 37, 337.
The identification of plant derived structures in humic materials using three dimensional NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFGhsbk%3D&md5=b0399cd652dbfb378fc8ee789d38533cCAS | 12564906PubMed |

[26]  A. J. Simpson, M. J. Simpson, E. Smith, B. P. Kelleher, Microbially derived inputs to soil organic matter: are current estimates too low? Environ. Sci. Technol. 2007, 41, 8070.
Microbially derived inputs to soil organic matter: are current estimates too low?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGnsLvP&md5=692c4f0fd117acb379bc3e6217b46897CAS | 18186339PubMed |

[27]  J. Fuhrman, Dissolved free amino acid cycling in an estuarine outflow plume. Mar. Ecol. Prog. Ser. 1990, 66, 197.
Dissolved free amino acid cycling in an estuarine outflow plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhslSltL8%3D&md5=7225fc45fb5b464717953ba2fe25b80aCAS |

[28]  J. I. Hedges, G. Eglinton, P. G. Hatcher, D. L. Kirchman, C. Arnosti, S. Derenne, R. P. Evershed, I. Kogel-Knabner, J. W. de Leeuw, R. Littke, W. Michaelis, J. Rullkotter, The molecularly uncharacterized component of nonliving organic matter in natural environments. Org. Geochem. 2000, 31, 945.
The molecularly uncharacterized component of nonliving organic matter in natural environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVGiur4%3D&md5=2c3ae2e9f1355e87277d27602140f590CAS |

[29]  E. Tanoue, S. Nishiyama, M. Kamo, A. Tsugita, Bacterial membranes: possible source of a major dissolved protein in seawater. Geochim. Cosmochim. Acta 1995, 59, 2643.
Bacterial membranes: possible source of a major dissolved protein in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXms1eltLk%3D&md5=a9144113bbbab986a9b357063b20aa48CAS |

[30]  H. Ogawa, Y. Amagai, I. Koike, K. Kaiser, R. Benner, Production of refractory dissolved organic matter by bacteria. Science 2001, 292, 917.
Production of refractory dissolved organic matter by bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsVSrt78%3D&md5=8401c5b9a163cb149068c30a24cfd717CAS | 11340202PubMed |

[31]  S. K. Park, N. S. Hettiarachchy, L. Were, Degradation behaviour of soy protein-wheat gluten films in simulated soil conditions. J. Agric. Food Chem. 2000, 48, 3027.
Degradation behaviour of soy protein-wheat gluten films in simulated soil conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktlerurk%3D&md5=57d99f7fb907cbd9e158c6d34d737c02CAS | 10898660PubMed |

[32]  R. A. Herman, J. D. Wolt, W. R. Halliday, Rapid degradation of the Cry1F insecticidal crystal protein in soil. J. Agric. Food Chem. 2002, 50, 7076.
Rapid degradation of the Cry1F insecticidal crystal protein in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVOjur0%3D&md5=957010ae82d0c21bfc48f1aaa55a7bc6CAS | 12428962PubMed |

[33]  A. S. Waksman, K. R. N. Iyer, Contribution to our knowledge of the chemical nature and origin of humus. Soil Sci. 1933, 36, 69.
Contribution to our knowledge of the chemical nature and origin of humus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3sXlslWjtA%3D%3D&md5=219633f04b10dc2f394574b80e8e561aCAS |

[34]  K. M. Holtman, H.-M. Chang, H. Jameel, J. F. Kadla, Elucidation of lignin structure through degradative methods: comparison of modified DFRC and thioacidolysis. J. Agric. Food Chem. 2003, 51, 3535.
Elucidation of lignin structure through degradative methods: comparison of modified DFRC and thioacidolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlemsrc%3D&md5=05d5279247ee30db3e22d2f21b9f611dCAS | 12769520PubMed |

[35]  A. P. Deshmukh, A. J. Simpson, P. G. Hatcher, Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy. Phytochemistry 2003, 64, 1163.
Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVeqt7w%3D&md5=496bc8e35293781cdfcb1643aac4e9f3CAS | 14568084PubMed |

[36]  A. J. Simpson, M. J. Simpson, W. L. Kingery, B. A. Lefebvre, A. Moser, A. J. Williams, M. Kvasha, B. P. Kelleher, The application of 1H high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes. Langmuir 2006, 22, 4498.
The application of 1H high-resolution magic-angle spinning NMR for the study of clay-organic associations in natural and synthetic complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFWrtLo%3D&md5=df2535ff0fcb2683bb0d66c409b697e8CAS | 16649755PubMed |

[37]  H. W. Zhang, D. W. Niesel, J. W. Peterson, G. R. Klimpel, Lipoprotein release by bacteria: potential factor in bacterial pathogenesis. Infect. Immun. 1998, 66, 5196..
| 9784522PubMed |

[38]  P. Tréguer, D. M. Nelson, A. J. van Bennekorn, D. J. DeMaster, A. Leynaert, B. Quéguiner, The silica balance in the world ocean: a re-estimate. Science 1995, 268, 375.
The silica balance in the world ocean: a re-estimate.Crossref | GoogleScholarGoogle Scholar | 17746543PubMed |

[39]  O. Ragueneau, P. Treguer, A. Leynaert, R. F. Anderson, M. A. Brzezinski, D. J. De Master, R. C. Dugdale, J. Dymond, G. Fische, R. Francois, C. Heinze, E. Maier-Reimer, V. Martin- Jezequel, D. M. Nelson, B. Queguiner, A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as paleoproductivity proxy. Global Planet. Change 2000, 26, 317.
A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as paleoproductivity proxy.Crossref | GoogleScholarGoogle Scholar |

[40]  A. Yool, T. Tyrrell, Role of diatoms in regulating the ocean’s silicon cycle. Global Biogeochem. Cycles 2003, 17, 1103.
Role of diatoms in regulating the ocean’s silicon cycle.Crossref | GoogleScholarGoogle Scholar |

[41]  D. J. Conley, Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem. Cycles 2002, 16, 1121.
Terrestrial ecosystems and the global biogeochemical silica cycle.Crossref | GoogleScholarGoogle Scholar |

[42]  P. W. Birkeland, Soils and Geomorphology 1999, 3rd edn (Oxford University Press: New York).

[43]  N. van Breemen, P. Buurman, Soil Formation 2002 (Kluwer Academic Press: Dordrecht).

[44]  M. Sommer, D. Kaczorek, Y. Kuzyakov, J. Breuer, Silicon pools and fluxes in soils and landscapes: a review. J. Plant Nutr. Soil Sci. 2006, 169, 310.
Silicon pools and fluxes in soils and landscapes: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlymsro%3D&md5=767702ab3b25e9cb65fe19fd56969d84CAS |

[45]  R. Brindle, M. Punch, K. Albert, H MAS NMR spectroscopy of chemically modified silica gels: a fast method to characterize stationary interphases for chromatography. Solid State Nucl. Mag. 1996, 6, 251.
H MAS NMR spectroscopy of chemically modified silica gels: a fast method to characterize stationary interphases for chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlShuro%3D&md5=7e96e2a9bed100e4ed1e61213fc116f7CAS |

[46]  B. Lam, A. J. Simpson, Direct 1H NMR spectroscopy of dissolved organic matter in natural waters. Analyst (Lond.) 2008, 133, 263.
Direct 1H NMR spectroscopy of dissolved organic matter in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGnur0%3D&md5=f6197adfbecc340596338d571ffc3a26CAS |

[47]  Y. Yamashita, E. Tanoue, Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar. Chem. 2003, 82, 145.
Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFamtbc%3D&md5=2586fd4d24002da404c1f2f827a0fc72CAS |

[48]  A. B. Jones, W. C. Dennison, G. R. Stmart, Macroalgal responses to nitrogen source and availability: amino acid metabolic profiling as a bioindicator using Gracilaria edulis (Rhodophyta). J. Phycol. 1996, 32, 757.
Macroalgal responses to nitrogen source and availability: amino acid metabolic profiling as a bioindicator using Gracilaria edulis (Rhodophyta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFGitg%3D%3D&md5=a61b65980d974a294df03d8a5e7c1cedCAS |

[49]  E. Mellina, J. B. Rasmussen, E. L. Mills, Impact of zebra mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes. Can. J. Fish. Aquat. Sci. 1995, 52, 2553.
Impact of zebra mussel (Dreissena polymorpha) on phosphorus cycling and chlorophyll in lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xitl2gsrs%3D&md5=cf1e7d2cde7c3f57d0ec3462ac985484CAS |

[50]  D. L. Arnott, M. J. Vanni, Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha) in the western basin of Lake Erie. Can. J. Fish. Aquat. Sci. 1996, 53, 646.
Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha) in the western basin of Lake Erie.Crossref | GoogleScholarGoogle Scholar |

[51]  J. D. Conroy, W. J. Edwards, R. A. Pontius, D. D. Kane, H. Zhang, J. F. Shea, J. N. Richey, D. A. Culver, Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie. Freshw. Biol. 2005, 50, 1146.
Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): potential impacts for nutrient remineralisation in western Lake Erie.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1aqsL8%3D&md5=f99511e421eb9f6cb35f893c1c1fb57eCAS |

[52]  O. Bykova, A. Laursen, V. Bostan, J. Bautista, L. McCarthy, Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth? Sci. Total Environ. 2006, 371, 362.
Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way that favours Microcystis growth?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOrtbjF&md5=67228a5f7e665aebd0debc41a36e873eCAS | 17011023PubMed |

[53]  D. J. Burdige, Sediment pore waters, in Biogeochemistry of Marine Dissolved Organic Matter (Eds D. A. Hansell, C. A. Carlson) 2002, vol. 13, p. 637 (Elsevier Science: New York).

[54]  K. Mopper, D. J. Kieber, Distribution and biological turnover of dissolved organic compounds in the water column of the Black Sea. Deep-Sea Res. 1991, 38, S1021.
Distribution and biological turnover of dissolved organic compounds in the water column of the Black Sea.Crossref | GoogleScholarGoogle Scholar |

[55]  J. W. Louda, L. Liu, E. W. Baker, Senescence- and death-related alteration of chlorophylls and carotenoids in marine phytoplankton. Org. Geochem. 1635, 2002, 12..

[56]  T. Matsuno, New structures of carotenoids in marine animals. Pure Appl. Chem. 1985, 57, 659.
New structures of carotenoids in marine animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlGjsLc%3D&md5=c0db95a20e34eb93d0db3f4b03cb5304CAS |