Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Intake and excretion of arsenicals in green (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata)

Tetsuro Agusa A B , Kozue Takagi B , Todd W. Miller B , Reiji Kubota C , Yasumi Anan D , Hisato Iwata B and Shinsuke Tanabe B E
+ Author Affiliations
- Author Affiliations

A Department of Legal Medicine, Shimane University Faculty of Medicine, Enya 89-1, Izumo, 693-8501, Japan.

B Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan.

C Division of Environmental Chemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo, 158-8501, Japan.

D Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan.

E Corresponding author. Email: shinsuke@agr.ehime-u.ac.jp

We dedicate this paper to the memory of the late Professor Kaise in recognition of his lifelong work on environmental arsenic chemistry.

Environmental Chemistry 8(1) 19-29 https://doi.org/10.1071/EN10091
Submitted: 15 August 2010  Accepted: 27 October 2010   Published: 28 February 2011

Environmental context. Although among higher marine animals, relatively high concentration of arsenic and unique distribution of arsenic compounds are found in green (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata), the accumulation mechanism remains unknown. We examined the accumulation of arsenicals in two turtles from the standpoint of short- and long-term intake and excretion and found that prey items might be important for the arsenic accumulation. This study can provide useful information on the accumulation pattern of arsenic speciation in sea turtles.

Abstract. We analysed arsenic (As) compounds in the stomach and intestine contents, bile and urine of green (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) to understand As accumulation through intake and excretion. Stable isotopes of δ15N and δ13C were also measured for understanding the feeding behaviour dependent accumulation of As. Major As species in gastrointestinal contents were unknown water-soluble As, followed by unextracted As. Concentrations of AB and DMA in the tissues were higher than those in the stomach contents (prey items), indicating high bioaccumulation of these arsenicals. In green turtles, AB concentration was high in bile and increased throughout the gastrointestinal tract, suggesting significant biliary excretion of AB. δ15N was positively correlated with AB level in green turtles, whereas a negative relationship between residual As and δ15N was observed in hawksbill turtles. This study indicates feeding behaviour-dependent accumulation of As compounds in both turtle species for the first time.

Additional keywords: arsenic compounds, bile, feeding habit, gastrointestinal contents, stable isotope ratios, urine.


References

[1]  K. A. Francesconi, J. S. Edmonds, Arsenic in the sea. Oceanogr. Mar. Biol. 1993, 31, 111..

[2]  T. Kaise, S. Watanabe, K. Itoh, The acute toxicity of arsenobetaine. Chemosphere 1985, 14, 1327.
The acute toxicity of arsenobetaine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsFGnt70%3D&md5=d7850674db99026e4655a9546d39bf17CAS |

[3]  T. Kaise, H. Yamauchi, Y. Horiguchi, T. Tani, S. Watanabe, T. Hirayama, S. Fukui, A comparative study on acute toxicity of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide in mice. Appl. Organomet. Chem. 1989, 3, 273.
A comparative study on acute toxicity of methylarsonic acid, dimethylarsinic acid and trimethylarsine oxide in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsVyntrY%3D&md5=06143e231fa1063f604ec84bc6e0e437CAS |

[4]  G. Lunde, Occurrence and transformation of arsenic in the marine environment. Environ. Health Perspect. 1977, 19, 47.
Occurrence and transformation of arsenic in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtVCg&md5=4be238481e73caf0694b7b99f84529b8CAS | 908311PubMed |

[5]  T. Kunito, R. Kubota, J. Fujihara, T. Agusa, S. Tanabe, Arsenic in marine mammals, seabirds, and sea turtles. Rev. Environ. Contam. Toxicol. 2008, 195, 31.
Arsenic in marine mammals, seabirds, and sea turtles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslaksbs%3D&md5=c5d8af6ff9dee0507a08e973b455f952CAS | 18418953PubMed |

[6]  T. Agusa, K. Takagi, R. Kubota, Y. Anan, H. Iwata, S. Tanabe, Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan. Environ. Pollut. 2008a, 153, 127.
Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFWmtbs%3D&md5=f863d5f13fdc9ea6a6aa77b137a0dd02CAS | 17728031PubMed |

[7]  T. Agusa, K. Takagi, H. Iwata, S. Tanabe, Arsenic species and their accumulation features in green turtles (Chelonia mydas). Mar. Pollut. Bull. 2008b, 57, 782.
Arsenic species and their accumulation features in green turtles (Chelonia mydas).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlGmtbo%3D&md5=3b0f94a5e943bc046fd22bd76a5be0b9CAS | 18291422PubMed |

[8]  W. Maher, E. Butler, Arsenic in the marine environment. Appl. Organomet. Chem. 1988, 2, 191.
Arsenic in the marine environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvFWr&md5=6d98b33f9ecf662ce3ebfb4664123c6aCAS |

[9]  M. Minagawa, E. Wada, Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 1984, 48, 1135.
Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktlOms7w%3D&md5=742efa77afd8975b0dd3a6cb3af20fbbCAS |

[10]  G. R. Rau, A. J. Mearns, D. R. Young, R. J. Olson, H. A. Schafer, I. R. Kaplan, Animal 13C/12C correlates with trophic level in pelagic food webs. Ecology 1983, 64, 1314.
Animal 13C/12C correlates with trophic level in pelagic food webs.Crossref | GoogleScholarGoogle Scholar |

[11]  T. W. Miller, R. D. Brodeur, G. H. Rau, Carbon stable isotopes reveal relative contribution of shelf-slope production to the northern California Current pelagic community. Limnol. Oceanogr. 2008, 53, 1493.
Carbon stable isotopes reveal relative contribution of shelf-slope production to the northern California Current pelagic community.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVyqsL0%3D&md5=5c6106c30d1d30771a84f8ba4afbc613CAS |

[12]  B. J. Godley, D. R. Thompson, S. Waldron, R. W. Furness, The trophic status of marine turtles as determined by stable isotope analysis. Mar. Ecol. Prog. Ser. 1998, 166, 277.
The trophic status of marine turtles as determined by stable isotope analysis.Crossref | GoogleScholarGoogle Scholar |

[13]  H. Hatase, N. Takai, Y. Matsuzawa, W. Sakamoto, K. Omuta, K. Goto, N. Arai, T. Fujiwara, Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar. Ecol. Prog. Ser. 2002, 233, 273.
Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry.Crossref | GoogleScholarGoogle Scholar |

[14]  H. Hatase, K. Sato, M. Yamaguchi, K. Takahashi, K. Tsukamoto, Individual variation in feeding habitat use by adult female green sea turtles (Chelonia mydas): are they obligately neritic herbivores? Oecologia 2006, 149, 52.
Individual variation in feeding habitat use by adult female green sea turtles (Chelonia mydas): are they obligately neritic herbivores?Crossref | GoogleScholarGoogle Scholar | 16683139PubMed |

[15]  K. E. Arthur, M. C. Boyle, C. J. Limpus, Ontogenetic changes in diet and habitat use in green sea turtle (Chelonia mydas) life history. Mar. Ecol. Prog. Ser. 2008, 362, 303.
Ontogenetic changes in diet and habitat use in green sea turtle (Chelonia mydas) life history.Crossref | GoogleScholarGoogle Scholar |

[16]  L. Cardona, A. Aguilar, L. Pazos, Delayed ontogenic dietary shift and high levels of omnivory in green turtles (Chelonia mydas) from the NW coast of Africa. Mar. Biol. 2009, 156, 1487.
Delayed ontogenic dietary shift and high levels of omnivory in green turtles (Chelonia mydas) from the NW coast of Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslequro%3D&md5=5b33c1c2fe47c66ed328d0429111507fCAS |

[17]  K. A. Bjorndal, A. B. Bolten, Hawksbill sea turtles in seagrass pastures: success in a peripheral habitat. Mar. Biol. 2010, 157, 135.
Hawksbill sea turtles in seagrass pastures: success in a peripheral habitat.Crossref | GoogleScholarGoogle Scholar |

[18]  S. Tanabe, Environmental Specimen Bank in Ehime University (es-BANK), Japan for global monitoring. J. Environ. Monit. 2006, 8, 782.
Environmental Specimen Bank in Ehime University (es-BANK), Japan for global monitoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVyhtbk%3D&md5=87b3b139ba8d632e33f3ca369a03a343CAS | 16896460PubMed |

[19]  Certification Sheet: Dogfish Muscle and Liver Certified Reference Materials for Trace Metals 1999 (National Research Council of Canada: Ottawa, ON, Canada).

[20]  K. A. Francesconi, J. S. Edmonds, M. Morita, in Arsenic in the Environment, Part I: Cycling and Characterization (Ed. J. O. Nriagu) 1994, pp. 189–219 (Wiley: New York).

[21]  M. Styblo, L. M. Del Razo, L. Vega, D. R. Germolec, E. L. LeCluyse, G. A. Hamilton, W. Reed, C. Wang, W. R. Cullen, D. J. Thomas, Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 2000, 74, 289.
Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Wjtb8%3D&md5=a8198e5bfc0b1c8d8c39d24d48d33022CAS | 11005674PubMed |

[22]  M. Styblo, M. F. Hughes, D. J. Thomas, Liberation and analysis of protein-bound arsenicals. J. Chromatogr. B Biomed. Appl. 1996, 677, 161.
Liberation and analysis of protein-bound arsenicals.Crossref | GoogleScholarGoogle Scholar | 8925090PubMed |

[23]  M. J. Ruiz Chancho, J. F. López Sánchez, R. Rubio, Occurrence of arsenic species in the seagrass Posidonia oceanica and in the marine algae Lessonia nigrescens and Durvillaea antarctica. J. Appl. Phycol. 2010, 22, 465.
Occurrence of arsenic species in the seagrass Posidonia oceanica and in the marine algae Lessonia nigrescens and Durvillaea antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosFGjtLo%3D&md5=3c7a739838c4081882611e1f4c79118fCAS |

[24]  K. A. Bjorndal, Foraging ecology and nutrition of sea turtles, in The Biology of Sea Turtles (Eds P. L. Lutz, J. A. Musick) 1997, pp. 199–231 (CRC Press: Boca Raton, FL).

[25]  Y. Yamaoka, M. L. Carmona, J. M. Oclarit, K. Jin, Y. Shibata, Characterization of water-soluble organoarsenic compounds in marine sponges. Appl. Organomet. Chem. 2006, 20, 545.
Characterization of water-soluble organoarsenic compounds in marine sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCksrvM&md5=279f094bcf6b987e2912553cbef4897aCAS |

[26]  T. Kaise, K. Hanaoka, S. Tagawa, T. Hirayama, S. Fukui, Distribution of inorganic arsenic and methylated arsenic in marine organisms. Appl. Organomet. Chem. 1988, 2, 539.
Distribution of inorganic arsenic and methylated arsenic in marine organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtVWhurg%3D&md5=6f1e0b5e6471de8ad5609c72dd7d43eeCAS |

[27]  J. M. Laparra, D. Vélez, R. Barberá, R. Montoro, R. Farré, Bioaccessibility and transport by Caco-2 cells of organoarsenical species present in seafood. J. Agric. Food Chem. 2007, 55, 5892.
Bioaccessibility and transport by Caco-2 cells of organoarsenical species present in seafood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlGnsL8%3D&md5=d91ed001803a9d1a872488cc212ea499CAS | 17567035PubMed |

[28]  B. M. Gamble, P. A. Gallagher, J. A. Shoemaker, X. Wei, C. A. Schwegel, J. T. Creed, An investigation of the chemical stability of arsenosugars in simulated gastric juice and acidic environments using IC–ICP-MS and IC-ESI-MS/MS. Analyst 2002, 127, 781.
An investigation of the chemical stability of arsenosugars in simulated gastric juice and acidic environments using IC–ICP-MS and IC-ESI-MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVegsb8%3D&md5=67b89780171b607049cdf82374f0fe9aCAS | 12146911PubMed |

[29]  J. S. Edmonds, K. A. Francesconi, Y. Shibata, M. Morita, R. J. Rippingale, Arsenic transformations in short marine food chains studied by HPLC-ICP MS. Appl. Organomet. Chem. 1997, 11, 281.
Arsenic transformations in short marine food chains studied by HPLC-ICP MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis12qsr8%3D&md5=d9825421a830799c95ec230d079a7cb9CAS |

[30]  K. Hanaoka, W. Goessler, K. Yoshida, Y. Fujitaka, T. Kaise, K. J. Irgolic, Arsenocholine- and dimethylated arsenic-containing lipids in starspotted shark Mustelus manazo. Appl. Organomet. Chem. 1999, 13, 765.
Arsenocholine- and dimethylated arsenic-containing lipids in starspotted shark Mustelus manazo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsleksr8%3D&md5=f16a0a74aff68ffc563ace72dd55ad78CAS |

[31]  K. Shiomi, Arsenic in marine organisms: chemical forms and toxicological aspects, in Arsenic in the Environment, Part II: Human Health and Ecosystem Effects (Ed. J. O. Nriagu) 1994, pp. 261–282 (Wiley: New York).

[32]  M. Vahter, Species differences in the metabolism of arsenic compounds. Appl. Organomet. Chem. 1994, 8, 175.
Species differences in the metabolism of arsenic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslGns70%3D&md5=3ab086fe3d45eb8629c415a0f800ea16CAS |

[33]  K. Shiomi, Y. Sugiyama, K. Shimakura, Y. Nagashima, Retention and biotransformation of arsenic compounds administered intraperitoneally to carp. Fish. Sci. 1996, 62, 261..

[34]  H. Amlund, K. A. Francesconi, C. Bethune, A.-K. Lundebye, M. H. G. Berntssen, Accumulation and elimination of dietary arsenobetaine in two species of fish, Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.). Environ. Toxicol. Chem. 2006, 25, 1787.
Accumulation and elimination of dietary arsenobetaine in two species of fish, Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFersbg%3D&md5=f5f0b351e0b8d3b5a0aa739ea366ea59CAS | 16833139PubMed |

[35]  J. S. Edmonds, K. A. Francesconi, Organoarsenic compounds in the marine environment, in Organometallic Compounds in the Environment (Ed. P. J. Craig) 2003, pp. 195–222 (Wiley: New York).

[36]  X. C. Le, X. Lu, X.-F. Li, Arsenic speciation. Anal. Chem. 2004, 76, 26A.
Arsenic speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt12j&md5=8382ec171dab2ab613ea5c573093016fCAS |

[37]  S. J. Martin, C. Newcombe, A. Raab, J. Feldmann, Arsenosugar metabolism not unique to the sheep of North Ronaldsay. Environ. Chem. 2005, 2, 190.
Arsenosugar metabolism not unique to the sheep of North Ronaldsay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrfI&md5=745347a948608b524adfaa95c99ad50aCAS |

[38]  H. R. Hansen, A. Raab, M. Jaspars, B. F. Milne, J. Feldmann, Sulfur-containing arsenical mistaken for dimethylarsinous acid [DMAIII] and identified as a Natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity. Chem. Res. Toxicol. 2004, 17, 1086.
Sulfur-containing arsenical mistaken for dimethylarsinous acid [DMAIII] and identified as a Natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslertbk%3D&md5=25f701e07b89dd4e4e72d80383afd1ecCAS | 15310240PubMed |

[39]  J. J. Sloth, E. H. Larsen, K. Julshamn, Report on three aliphatic dimethylarsinoyl compounds as common minor constituents in marine samples. An investigation using high-performance liquid chromatography/inductively coupled plasma mass spectrometry and electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 227.
Report on three aliphatic dimethylarsinoyl compounds as common minor constituents in marine samples. An investigation using high-performance liquid chromatography/inductively coupled plasma mass spectrometry and electrospray ionisation tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFChu7g%3D&md5=3c35acf150c2d1355f1e28c01984192dCAS | 15593252PubMed |

[40]  K.-I. Ebisuda, T. Kunito, R. Kubota, S. Tanabe, Arsenic concentrations and speciation in the tissues of ringed seals (Phoca hispida) from Pangnirtung, Canada. Appl. Organomet. Chem. 2002, 16, 451.
Arsenic concentrations and speciation in the tissues of ringed seals (Phoca hispida) from Pangnirtung, Canada.Crossref | GoogleScholarGoogle Scholar |

[41]  K. Kuroda, K. Yoshida, A. Yasukawa, H. Wanibuchi, S. Fukushima, G. Endo, Enteric bacteria may play a role in mammalian arsenic metabolism. Appl. Organomet. Chem. 2001, 15, 548.
Enteric bacteria may play a role in mammalian arsenic metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFOqsLo%3D&md5=980da7503683ba73b40f1c6e0a1e2aa6CAS |

[42]  R. O. Jenkins, A. W. Ritchie, C. F. Harrington, P. G. Sutton, J. S. Edmonds, W. Goessler, D. Kuehnelt, N. Molenat, Bacterial degradation of arsenobetaine via dimethylarsinoylacetate. Arch. Microbiol. 2003, 180, 142.
Bacterial degradation of arsenobetaine via dimethylarsinoylacetate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1ygs7Y%3D&md5=c2e74214bf3a08f12424d50598735aa4CAS | 12827219PubMed |

[43]  H. Amlund, K. Ingebrigtsen, K. Hylland, A. Ruus, D. O. Eriksen, M. H. G. Berntssen, Disposition of arsenobetaine in two marine fish species following administration of a single oral dose of [14C]arsenobetaine. Comp. Biochem. Physiol. Part Toxicol. Pharmacol. 2006a, 143, 171.
Disposition of arsenobetaine in two marine fish species following administration of a single oral dose of [14C]arsenobetaine.Crossref | GoogleScholarGoogle Scholar |

[44]  S. V. Kala, M. W. Neely, G. Kala, C. I. Prater, D. W. Atwood, J. S. Rice, M. W. Lieberman, The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J. Biol. Chem. 2000, 275, 33 404.
The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVOqu7o%3D&md5=e64f08688209375064b22fc62bcc65a5CAS |

[45]  T. Hayakawa, Y. Kobayashi, X. Cui, S. Hirano, A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 2005, 79, 183.
A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlehtr8%3D&md5=105c0c02da277dbd7ae257f52803bcf8CAS | 15526190PubMed |

[46]  M. Yamamuro, H. Kayanne, M. Minagawa, Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol. Oceanogr. 1995, 40, 617.
Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFGms7Y%3D&md5=ef4a931e9fa2f7f2fe9dd1638ae281aaCAS |

[47]  Y. Umezawa, T. Miyajima, M. Yamamuro, H. Kayanne, I. Koike, Fine-scale mapping of land-derived nitrogen in coral reefs by δ15N in macroalgae. Limnol. Oceanogr. 2002, 47, 1405.
Fine-scale mapping of land-derived nitrogen in coral reefs by δ15N in macroalgae.Crossref | GoogleScholarGoogle Scholar |

[48]  W. L. Wang, H. W. Yeh, δ13C values of marine macroalgae from Taiwan. Bot. Bull. Acad. Sin. 2003, 44, 107..

[49]  M. Yamamuro, H. Kayanne, H. Yamano, δ15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems. Mar. Pollut. Bull. 2003, 46, 452.
δ15N of seagrass leaves for monitoring anthropogenic nutrient increases in coral reef ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivV2gs7c%3D&md5=f376b1401ab4c38a7ea0bcca1bef74d6CAS | 12705918PubMed |

[50]  K. A. Asante, T. Agusa, H. Mochizuki, K. Ramu, S. Inoue, T. Kubodera, S. Takahashi, A. Subramanian, S. Tanabe, Trace elements and stable isotopes (δ13C and δ15N) in shallow and deep-water organisms from the East China Sea. Environ. Pollut. 2008, 156, 862.
Trace elements and stable isotopes (δ13C and δ15N) in shallow and deep-water organisms from the East China Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSgtbzK&md5=eb1259edbdd1864c85e1cbe3b0d59812CAS | 18583004PubMed |