Assessing the toxicity of arsenic-bearing sulfide minerals with the bio-indicator Corophium volutator
Longpeng Cui A B C , Chris Newcombe C , Dagmar S. Urgast C , Andrea Raab C , Eva M. Krupp C D and Jörg Feldmann C EA Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.
B School of Earth and Environmental Science, Anhui University of Science and Technology, Huainan 232001, P. R. China.
C Trace Element Speciation Laboratory Aberdeen (TESLA), Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK.
D Aberdeen Centre of Environmental Sustainability (ACES), University of Aberdeen,AB24 2UU, Scotland, UK.
E Corresponding author. Email: j.feldmann@abdn.ac.uk
We dedicate this paper to the memory of the late Professor Kaise in recognition of his lifelong work on environmental arsenic chemistry.
Environmental Chemistry 8(1) 52-61 https://doi.org/10.1071/EN10044
Submitted: 4 May 2010 Accepted: 19 August 2010 Published: 28 February 2011
Environmental context. Risk identification and characterisation of As-bearing sulfide minerals, the most important natural source of arsenic pollution, is significant in pollution control and risk management at mine sites. Bioassays constitute a cost-efficient approach to toxicity testing because they give an integrated picture of the biologically available fraction thereby allowing predictions of the potential combined effects of contaminants in testing mixtures.
Abstract. A sediment-based toxicity test was designed to investigate the biological response of the amphipod Corophium volutator exposed to three common arsenic minerals, namely realgar (AsS), orpiment (As2S3) and arsenopyrite (Fe[AsS]). The LD50 for the loaded minerals and the added As in the sediment showed mineral-dependent toxicities increasing in the order of AsS ≈ As2S3 < Fe[AsS] (224–1329 mg As kg–1). The exposed animals accumulated arsenic in a mineral-dependent manner similar to the observed toxicity, with AsS ≈ As2S3 and both higher than that for Fe[AsS]. The arsenic concentration in C. volutator at the LD50 exposure exhibits the same mineral independences, confirming that the response is arsenic specific. A significant increase in extractable inorganic arsenic in the tissue (over 100-fold) at higher arsenic exposures (up to 3% mineral-loading, w/w) was revealed hence no significant biotransformation of inorganic arsenic. C. volutator is sensitive to arsenic and has the potential to be used as a bio-indicator to assess the toxicity of arsenic-containing sediments or arsenic-containing mining wastes.
Additional keywords: bioaccumulation, biotransformation, speciation.
References
[1] K. A. Francesconi, Current perspectives in arsenic environmental and biological research. Environ. Chem. 2005, 2, 141.| Current perspectives in arsenic environmental and biological research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrbF&md5=e39ab06d5ffeedd7e138d0773a45c15cCAS |
[2] P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
| A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=bee6f2503e0bc328db084535a5edadb4CAS |
[3] R. Cruz, R. Lara-Castro, M. Monroy, Study of arsenic mobility from arsenopyrite circum-neutral weathering. Abstr. Pap. Am. Chem. S. 2006, 231, 45-ENVR.
[4] F. P. Walker, M. E. Schreiber, J. D. Rimstidt, Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochim. Cosmochim. Acta 2006, 70, 1668.
| Kinetics of arsenopyrite oxidative dissolution by oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFCiu7c%3D&md5=38360e7b6315cbb184b889ba98ebd374CAS |
[5] M. F. Lengke, R. N. Tempel, Reaction rates of natural orpiment oxidation at 25 to 40°C and pH 6.8 to 8.2 and comparison with amorphous As2S3 oxidation. Geochim. Cosmochim. Acta 2002, 66, 3281.
| Reaction rates of natural orpiment oxidation at 25 to 40°C and pH 6.8 to 8.2 and comparison with amorphous As2S3 oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslKkurw%3D&md5=d5e79e07c5ab1e93ca87683a5c6a297fCAS |
[6] M. F. Lengke, R. N. Tempel, Natural realgar and amorphous AsS oxidation kinetics. Geochim. Cosmochim. Acta 2003, 67, 859.
| Natural realgar and amorphous AsS oxidation kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Wgt7Y%3D&md5=71b058ffa08cea77c46b19053ecba17cCAS |
[7] D. Craw, D. Falconer, J. H. Youngson, Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chem. Geol. 2003, 199, 71.
| Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVehurc%3D&md5=81f960f09afbefa391c631d2e5a5ed28CAS |
[8] M. F. Lengke, R. N. Tempel, Geochemical modelling of arsenic sulphide oxidation kinetics in a mining environment. Geochim. Cosmochim. Acta 2005, 69, 341.
| Geochemical modelling of arsenic sulphide oxidation kinetics in a mining environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptV2quw%3D%3D&md5=e5026b95d2c96c5e6cbbaa274659f1d9CAS |
[9] P. S. Rainbow, D. J. H. Phillips, Cosmopolitan biomonitors of trace-metals. Mar. Pollut. Bull. 1993, 26, 593.
| Cosmopolitan biomonitors of trace-metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFantL4%3D&md5=dc61002968e49db336c8ad4156a9985dCAS |
[10] J. M. Guerra-García, A. Ruiz-Tabares, E. Baeza-Rojano, M. P. Cabezas, J. J. Díaz-Pavón, I. Pacios, M. Maestre, A. Roi Gonzáleza, F. Espinosa, J. C. García-Gómez, Trace metals in Caprella (Crustacea: Amphipoda). A new tool for monitoring pollution in coastal areas? Ecol. Indic. 2010, 10, 734.
| Trace metals in Caprella (Crustacea: Amphipoda). A new tool for monitoring pollution in coastal areas?Crossref | GoogleScholarGoogle Scholar |
[11] C. Peters, W. Ahlf, Reproduction of the estuarine and marine amphipod Corophium volutator (Pallas) in laboratory for toxicity testing. Chemosphere 2005, 59, 525.
| Reproduction of the estuarine and marine amphipod Corophium volutator (Pallas) in laboratory for toxicity testing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFGltLk%3D&md5=6c9f235b43ab93531604712b155a8758CAS | 15788175PubMed |
[12] S. Ouypornkochagorn, J. Feldmann, Dermal uptake of arsenic through human skin depends strongly on its speciation. Environ. Sci. Technol. 2010, 44, 3972.
| Dermal uptake of arsenic through human skin depends strongly on its speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFWgtrc%3D&md5=459b2e4f49d09b3a5c33bdafe2164a03CAS | 20415415PubMed |
[13] US Environmental Protection Agency and US Army Corps of Engineers, Testing manual. EPA-503/8–91/001 1991 (US EPA and US ACE: Washington, DC).
[14] D. S. Urgast, G. C. Adams, A. Raab, J. Feldmann, Arsenic concentration and speciation of the marine hyperaccumulator whelk Buccinum undatum collected in coastal waters of northern Britain. J. Environ. Monit. 2010, 12, 1126.
| Arsenic concentration and speciation of the marine hyperaccumulator whelk Buccinum undatum collected in coastal waters of northern Britain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFOis74%3D&md5=84e4b29f327c55ebb93bcf5bd9c47882CAS |
[15] J. Feldmann, K. John, P. Pengprecha, Arsenic metabolism in seaweed-eating sheep from northern Scotland. Fresenius J. Anal. Chem. 2000, 368, 116.
| Arsenic metabolism in seaweed-eating sheep from northern Scotland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslKrurg%3D&md5=e454eaf9a305d35ac9398768e1a3d12fCAS | 11220824PubMed |
[16] H. R. Hansen, A. Raab, K. A. Francesconi, J. Feldmann, Metabolism of arsenic by sheep chronically exposed to arsenosugars as a normal part of their diet. 1. Quantitative intake, uptake, and excretion. Environ. Sci. Technol. 2003, 37, 845.
| Metabolism of arsenic by sheep chronically exposed to arsenosugars as a normal part of their diet. 1. Quantitative intake, uptake, and excretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Wnsw%3D%3D&md5=11810d51e9b48b89d2bc4badd377d63aCAS | 12666911PubMed |
[17] P. Pengprecha, M. Wilson, A. Raab, J. Feldmann, Biodegradation of arsenosugars in marine sediment. Appl. Organomet. Chem. 2005, 19, 819.
| Biodegradation of arsenosugars in marine sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFKku70%3D&md5=9df505c949b3a06409fca9ec9ef09324CAS |
[18] K. J. Rader, P. M. Dombrowski, K. J. Farley, J. D. Mahony, D. M. Di Toro, Effect of thioarsenite formation on arsenic(III) toxicity. Environ. Toxicol. Chem. 2004, 23, 1649.
| Effect of thioarsenite formation on arsenic(III) toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOhtLw%3D&md5=254ba9e20af816434888625459f01ff9CAS | 15230317PubMed |
[19] S. Stauder, B. Raue, F. Sacher, Thioarsenates in sulfidic waters. Environ. Sci. Technol. 2005, 39, 5933.
| Thioarsenates in sulfidic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWhsrk%3D&md5=5afab46883e24601074a9cca564805b8CAS | 16173549PubMed |
[20] V. Bryant, D. M. Newbery, D. S. McLusky, R. Campbell, Effect of temperature and salinity on the toxicity of arsenic to 3 estuarine invertbrates (Corophium volutator, Macoma balthica, Tubifex costatus). Mar. Ecol. Prog. Ser. 1985, 24, 129.
| Effect of temperature and salinity on the toxicity of arsenic to 3 estuarine invertbrates (Corophium volutator, Macoma balthica, Tubifex costatus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkvF2rtbs%3D&md5=9d28f958575acdbedd05b968a2558ce5CAS |
[21] J. Hellou, K. Cheeseman, M. L. Jouvenelle, S. Robertson, Behavioral response of Corophium volutator relative to experimental conditions, physical and chemical disturbances. Environ. Toxicol. Chem. 2005, 24, 3061.
| Behavioral response of Corophium volutator relative to experimental conditions, physical and chemical disturbances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12nu7bJ&md5=bb62fcaeb738177c8db1e387316155beCAS | 16445086PubMed |
[22] C. K. King, S. A. Gale, J. L. Stauber, Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the estuarine amphipod Melita plumulosa. Environ. Toxicol. 2006, 21, 489.
| Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the estuarine amphipod Melita plumulosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCjsbnJ&md5=b5fa126b483a15c02edcef262760dac4CAS | 16944510PubMed |
[23] J. C. McGeer, K. V. Brix, J. M. Skeaff, D. K. DeForest, S. I. Brigham, W. J. Adams, A. Green, Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ. Toxicol. Chem. 2003, 22, 1017.
| Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFCmsr4%3D&md5=873b14418adb4e76fb061c89febb3d6fCAS | 12729211PubMed |
[24] P. S. Rainbow, Trace metal concentrations in aquatic invertebrates: why and so what? Environ. Pollut. 2002, 120, 497.
| Trace metal concentrations in aquatic invertebrates: why and so what?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsF2kt7w%3D&md5=78e5fe074bdb4fade5113edd2453e709CAS | 12442773PubMed |
[25] S. N. Luoma, P. S. Rainbow, Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol. 2005, 39, 1921.
| Why is metal bioaccumulation so variable? Biodynamics as a unifying concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsF2ntLY%3D&md5=5c810653f6f35c70b4f2d49e47cef6afCAS | 15871220PubMed |
[26] K. A. Francesconi, J. S. Edmonds, Arsenic and marine organisms. Adv. Inorg. Chem. 1996, 44, 147.
| Arsenic and marine organisms.Crossref | GoogleScholarGoogle Scholar |
[27] S. M. Lawrie, D. G. Raffaelli, C. H. Emes, Small-scale patterns in the distribution of the amphipod Corophium volutator on the Ythan estuary, Aberdeenshire, Scotland. Sarsia 2000, 85, 321.
[28] M. C. Casado-Martinez, B. D. Smith, S. N. Luoma, P. S. Rainbow, Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. Aquat. Toxicol. 2010, 98, 34.
| Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFWqt7c%3D&md5=5ff1c7104bbe57d812e761155ce7605dCAS | 20149466PubMed |