Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Assessing the toxicity of arsenic-bearing sulfide minerals with the bio-indicator Corophium volutator

Longpeng Cui A B C , Chris Newcombe C , Dagmar S. Urgast C , Andrea Raab C , Eva M. Krupp C D and Jörg Feldmann C E
+ Author Affiliations
- Author Affiliations

A Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.

B School of Earth and Environmental Science, Anhui University of Science and Technology, Huainan 232001, P. R. China.

C Trace Element Speciation Laboratory Aberdeen (TESLA), Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK.

D Aberdeen Centre of Environmental Sustainability (ACES), University of Aberdeen,AB24 2UU, Scotland, UK.

E Corresponding author. Email: j.feldmann@abdn.ac.uk

We dedicate this paper to the memory of the late Professor Kaise in recognition of his lifelong work on environmental arsenic chemistry.

Environmental Chemistry 8(1) 52-61 https://doi.org/10.1071/EN10044
Submitted: 4 May 2010  Accepted: 19 August 2010   Published: 28 February 2011

Environmental context. Risk identification and characterisation of As-bearing sulfide minerals, the most important natural source of arsenic pollution, is significant in pollution control and risk management at mine sites. Bioassays constitute a cost-efficient approach to toxicity testing because they give an integrated picture of the biologically available fraction thereby allowing predictions of the potential combined effects of contaminants in testing mixtures.

Abstract. A sediment-based toxicity test was designed to investigate the biological response of the amphipod Corophium volutator exposed to three common arsenic minerals, namely realgar (AsS), orpiment (As2S3) and arsenopyrite (Fe[AsS]). The LD50 for the loaded minerals and the added As in the sediment showed mineral-dependent toxicities increasing in the order of AsS ≈ As2S3 < Fe[AsS] (224–1329 mg As kg–1). The exposed animals accumulated arsenic in a mineral-dependent manner similar to the observed toxicity, with AsS ≈ As2S3 and both higher than that for Fe[AsS]. The arsenic concentration in C. volutator at the LD50 exposure exhibits the same mineral independences, confirming that the response is arsenic specific. A significant increase in extractable inorganic arsenic in the tissue (over 100-fold) at higher arsenic exposures (up to 3% mineral-loading, w/w) was revealed hence no significant biotransformation of inorganic arsenic. C. volutator is sensitive to arsenic and has the potential to be used as a bio-indicator to assess the toxicity of arsenic-containing sediments or arsenic-containing mining wastes.

Additional keywords: bioaccumulation, biotransformation, speciation.


References

[1]  K. A. Francesconi, Current perspectives in arsenic environmental and biological research. Environ. Chem. 2005, 2, 141.
Current perspectives in arsenic environmental and biological research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsrbF&md5=e39ab06d5ffeedd7e138d0773a45c15cCAS |

[2]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
A review of the source, behaviour and distribution of arsenic in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVSmur0%3D&md5=bee6f2503e0bc328db084535a5edadb4CAS |

[3]  R. Cruz, R. Lara-Castro, M. Monroy, Study of arsenic mobility from arsenopyrite circum-neutral weathering. Abstr. Pap. Am. Chem. S. 2006, 231, 45-ENVR.

[4]  F. P. Walker, M. E. Schreiber, J. D. Rimstidt, Kinetics of arsenopyrite oxidative dissolution by oxygen. Geochim. Cosmochim. Acta 2006, 70, 1668.
Kinetics of arsenopyrite oxidative dissolution by oxygen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFCiu7c%3D&md5=38360e7b6315cbb184b889ba98ebd374CAS |

[5]  M. F. Lengke, R. N. Tempel, Reaction rates of natural orpiment oxidation at 25 to 40°C and pH 6.8 to 8.2 and comparison with amorphous As2S3 oxidation. Geochim. Cosmochim. Acta 2002, 66, 3281.
Reaction rates of natural orpiment oxidation at 25 to 40°C and pH 6.8 to 8.2 and comparison with amorphous As2S3 oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslKkurw%3D&md5=d5e79e07c5ab1e93ca87683a5c6a297fCAS |

[6]  M. F. Lengke, R. N. Tempel, Natural realgar and amorphous AsS oxidation kinetics. Geochim. Cosmochim. Acta 2003, 67, 859.
Natural realgar and amorphous AsS oxidation kinetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Wgt7Y%3D&md5=71b058ffa08cea77c46b19053ecba17cCAS |

[7]  D. Craw, D. Falconer, J. H. Youngson, Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations. Chem. Geol. 2003, 199, 71.
Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVehurc%3D&md5=81f960f09afbefa391c631d2e5a5ed28CAS |

[8]  M. F. Lengke, R. N. Tempel, Geochemical modelling of arsenic sulphide oxidation kinetics in a mining environment. Geochim. Cosmochim. Acta 2005, 69, 341.
Geochemical modelling of arsenic sulphide oxidation kinetics in a mining environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptV2quw%3D%3D&md5=e5026b95d2c96c5e6cbbaa274659f1d9CAS |

[9]  P. S. Rainbow, D. J. H. Phillips, Cosmopolitan biomonitors of trace-metals. Mar. Pollut. Bull. 1993, 26, 593.
Cosmopolitan biomonitors of trace-metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFantL4%3D&md5=dc61002968e49db336c8ad4156a9985dCAS |

[10]  J. M. Guerra-García, A. Ruiz-Tabares, E. Baeza-Rojano, M. P. Cabezas, J. J. Díaz-Pavón, I. Pacios, M. Maestre, A. Roi Gonzáleza, F. Espinosa, J. C. García-Gómez, Trace metals in Caprella (Crustacea: Amphipoda). A new tool for monitoring pollution in coastal areas? Ecol. Indic. 2010, 10, 734.
Trace metals in Caprella (Crustacea: Amphipoda). A new tool for monitoring pollution in coastal areas?Crossref | GoogleScholarGoogle Scholar |

[11]  C. Peters, W. Ahlf, Reproduction of the estuarine and marine amphipod Corophium volutator (Pallas) in laboratory for toxicity testing. Chemosphere 2005, 59, 525.
Reproduction of the estuarine and marine amphipod Corophium volutator (Pallas) in laboratory for toxicity testing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFGltLk%3D&md5=6c9f235b43ab93531604712b155a8758CAS | 15788175PubMed |

[12]  S. Ouypornkochagorn, J. Feldmann, Dermal uptake of arsenic through human skin depends strongly on its speciation. Environ. Sci. Technol. 2010, 44, 3972.
Dermal uptake of arsenic through human skin depends strongly on its speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFWgtrc%3D&md5=459b2e4f49d09b3a5c33bdafe2164a03CAS | 20415415PubMed |

[13]  US Environmental Protection Agency and US Army Corps of Engineers, Testing manual. EPA-503/8–91/001 1991 (US EPA and US ACE: Washington, DC).

[14]  D. S. Urgast, G. C. Adams, A. Raab, J. Feldmann, Arsenic concentration and speciation of the marine hyperaccumulator whelk Buccinum undatum collected in coastal waters of northern Britain. J. Environ. Monit. 2010, 12, 1126.
Arsenic concentration and speciation of the marine hyperaccumulator whelk Buccinum undatum collected in coastal waters of northern Britain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvFOis74%3D&md5=84e4b29f327c55ebb93bcf5bd9c47882CAS |

[15]  J. Feldmann, K. John, P. Pengprecha, Arsenic metabolism in seaweed-eating sheep from northern Scotland. Fresenius J. Anal. Chem. 2000, 368, 116.
Arsenic metabolism in seaweed-eating sheep from northern Scotland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslKrurg%3D&md5=e454eaf9a305d35ac9398768e1a3d12fCAS | 11220824PubMed |

[16]  H. R. Hansen, A. Raab, K. A. Francesconi, J. Feldmann, Metabolism of arsenic by sheep chronically exposed to arsenosugars as a normal part of their diet. 1. Quantitative intake, uptake, and excretion. Environ. Sci. Technol. 2003, 37, 845.
Metabolism of arsenic by sheep chronically exposed to arsenosugars as a normal part of their diet. 1. Quantitative intake, uptake, and excretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Wnsw%3D%3D&md5=11810d51e9b48b89d2bc4badd377d63aCAS | 12666911PubMed |

[17]  P. Pengprecha, M. Wilson, A. Raab, J. Feldmann, Biodegradation of arsenosugars in marine sediment. Appl. Organomet. Chem. 2005, 19, 819.
Biodegradation of arsenosugars in marine sediment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFKku70%3D&md5=9df505c949b3a06409fca9ec9ef09324CAS |

[18]  K. J. Rader, P. M. Dombrowski, K. J. Farley, J. D. Mahony, D. M. Di Toro, Effect of thioarsenite formation on arsenic(III) toxicity. Environ. Toxicol. Chem. 2004, 23, 1649.
Effect of thioarsenite formation on arsenic(III) toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOhtLw%3D&md5=254ba9e20af816434888625459f01ff9CAS | 15230317PubMed |

[19]  S. Stauder, B. Raue, F. Sacher, Thioarsenates in sulfidic waters. Environ. Sci. Technol. 2005, 39, 5933.
Thioarsenates in sulfidic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVWhsrk%3D&md5=5afab46883e24601074a9cca564805b8CAS | 16173549PubMed |

[20]  V. Bryant, D. M. Newbery, D. S. McLusky, R. Campbell, Effect of temperature and salinity on the toxicity of arsenic to 3 estuarine invertbrates (Corophium volutator, Macoma balthica, Tubifex costatus). Mar. Ecol. Prog. Ser. 1985, 24, 129.
Effect of temperature and salinity on the toxicity of arsenic to 3 estuarine invertbrates (Corophium volutator, Macoma balthica, Tubifex costatus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkvF2rtbs%3D&md5=9d28f958575acdbedd05b968a2558ce5CAS |

[21]  J. Hellou, K. Cheeseman, M. L. Jouvenelle, S. Robertson, Behavioral response of Corophium volutator relative to experimental conditions, physical and chemical disturbances. Environ. Toxicol. Chem. 2005, 24, 3061.
Behavioral response of Corophium volutator relative to experimental conditions, physical and chemical disturbances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12nu7bJ&md5=bb62fcaeb738177c8db1e387316155beCAS | 16445086PubMed |

[22]  C. K. King, S. A. Gale, J. L. Stauber, Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the estuarine amphipod Melita plumulosa. Environ. Toxicol. 2006, 21, 489.
Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the estuarine amphipod Melita plumulosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCjsbnJ&md5=b5fa126b483a15c02edcef262760dac4CAS | 16944510PubMed |

[23]  J. C. McGeer, K. V. Brix, J. M. Skeaff, D. K. DeForest, S. I. Brigham, W. J. Adams, A. Green, Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ. Toxicol. Chem. 2003, 22, 1017.
Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFCmsr4%3D&md5=873b14418adb4e76fb061c89febb3d6fCAS | 12729211PubMed |

[24]  P. S. Rainbow, Trace metal concentrations in aquatic invertebrates: why and so what? Environ. Pollut. 2002, 120, 497.
Trace metal concentrations in aquatic invertebrates: why and so what?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsF2kt7w%3D&md5=78e5fe074bdb4fade5113edd2453e709CAS | 12442773PubMed |

[25]  S. N. Luoma, P. S. Rainbow, Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol. 2005, 39, 1921.
Why is metal bioaccumulation so variable? Biodynamics as a unifying concept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsF2ntLY%3D&md5=5c810653f6f35c70b4f2d49e47cef6afCAS | 15871220PubMed |

[26]  K. A. Francesconi, J. S. Edmonds, Arsenic and marine organisms. Adv. Inorg. Chem. 1996, 44, 147.
Arsenic and marine organisms.Crossref | GoogleScholarGoogle Scholar |

[27]  S. M. Lawrie, D. G. Raffaelli, C. H. Emes, Small-scale patterns in the distribution of the amphipod Corophium volutator on the Ythan estuary, Aberdeenshire, Scotland. Sarsia 2000, 85, 321.

[28]  M. C. Casado-Martinez, B. D. Smith, S. N. Luoma, P. S. Rainbow, Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. Aquat. Toxicol. 2010, 98, 34.
Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFWqt7c%3D&md5=5ff1c7104bbe57d812e761155ce7605dCAS | 20149466PubMed |