Biogeochemistry and cyanobacterial blooms: investigating the relationship in a shallow, polymictic, temperate lake
Michael R. Grace A D , Todd R. Scicluna A , Chamindra L. Vithana A , Peter Symes B and Katrina P. Lansdown A CA Water Studies Centre and School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
B Royal Botanic Gardens, South Yarra, VIC 3141, Australia.
C Present address: School of Geography, Queen Mary, University of London,Mile End Road, London, E1 4NS, UK.
D Corresponding author. Email: mike.grace@monash.edu
Environmental Chemistry 7(5) 443-456 https://doi.org/10.1071/EN10042
Submitted: 25 April 2010 Accepted: 27 August 2010 Published: 13 October 2010
Environmental context. Effective mitigation of algal blooms, and their associated detrimental impacts on flora and fauna, requires an understanding of the factors leading to bloom development, including nutrients, light and hydrodynamics. We investigated a shallow, freshwater lake and demonstrate that there is sufficient bioavailable phosphorus to annually generate a large algal biomass. Extensive, seasonal phosphorus release from sediments is controlled by the interactions of the biogeochemical cycles of nitrogen, carbon, oxygen, iron and sulfur.
Abstract. The shallow, polymictic Ornamental Lake in the Royal Botanic Gardens, Melbourne, Australia, has suffered significant blooms of toxic Anabaena then Microcystis species every summer over the last decade. Although the hydrodynamic conditions of the water column are conducive for algal growth, the prolific growth is controlled by the bioavailable phosphorus concentration. Springtime phosphorus fluxes of 0.1–0.2 mmol m–2 day–1 from the sediment contribute to bloom development. These rates are also observed in anoxic sediment core incubations. Diel stratification, combined with high oxygen consumption associated with organic carbon loading, favour P release. Release rates may be amplified by the effects of sulfate reduction on P sorption onto FeIII (oxyhydroxide) surfaces. Sulfate concentrations are at the threshold where methanogenesis is inhibited in anoxic conditions. Effective bloom mitigation will require a >100-fold reduction in P concentrations, which may be achieved through macrophyte planting and inducing greater water flow through the lake system.
Additional keywords: algal bloom, dissolved inorganic nitrogen, phosphorus mobilisation, sediment, sulfate reduction.
[1]
C. Wagner ,
R. Adrian ,
Cyanobacteria dominance: quantifying the effects of climate change.
Limnol. Oceanogr. 2009
, 54, 2460.
[2]
H. W. Paerl ,
Nuisance phytoplankton blooms in coastal, estuarine and inland waters.
Limnol. Oceanogr. 1988
, 33, 823.
| Crossref | GoogleScholarGoogle Scholar |
[3]
M. T. Dokulil ,
K. Teubner ,
Eutrophication and restoration of shallow lakes – the concept of stable equilibria revisited.
Hydrobiologia 2003
, 506–509, 29.
| Crossref | GoogleScholarGoogle Scholar |
[4]
M. Scheffer ,
E. H. van Nes ,
Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size.
Hydrobiologia 2007
, 584, 455.
| Crossref | GoogleScholarGoogle Scholar |
[5]
G. B. Arhonditsis ,
M. Winder ,
M. T. Brett ,
D. E. Schindler ,
Patterns and mechanisms of phytoplankton variability in Lake Washington (USA).
Water Res. 2004
, 38, 4013.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[6]
H. S. Jensen ,
P. Kristensen ,
E. Jeppesen ,
A. Skytthe ,
Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes.
Hydrobiologia 1992
, 235–236, 731.
| Crossref | GoogleScholarGoogle Scholar |
[7]
N. F. Caraco ,
J. J. Cole ,
G. E. Likens ,
Evidence for sulphate-controlled phosphorus release from sediments of aquatic systems.
Nature 1989
, 341, 316.
| Crossref | GoogleScholarGoogle Scholar |
[8]
A. Kleeberg ,
Interactions between benthic phosphorus release and sulfur cycling in Lake Scharmutzelsee (Germany).
Water Air Soil Pollut. 1997
, 99, 391.
| Crossref | GoogleScholarGoogle Scholar |
[9]
B. Thamdrup ,
H. Fossing ,
B. B. Jørgensen ,
Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark.
Geochim. Cosmochim. Acta 1994
, 58, 5115.
| Crossref | GoogleScholarGoogle Scholar |
[10]
M. Holmer ,
P. Storkholm ,
Sulphate reduction and sulphur cycling in lake sediments: a review.
Freshw. Biol. 2001
, 46, 431.
| Crossref | GoogleScholarGoogle Scholar |
[11]
B. B. Jørgensen ,
A. Weber ,
J. Zopfi ,
Sulfate reduction and anaerobic methane oxidation in Black Sea sediments.
Deep-Sea Res. 2001
, 48, 2097.
| Crossref | GoogleScholarGoogle Scholar |
[12]
D. S. Baldwin ,
K. C. Hall ,
G. N. Rees ,
A. J. Richardson ,
Development of a protocol for recognizing sulfidic sediments (potential acid sulfate soils) in freshwater wetlands.
Ecol. Manage. Restor. 2007
, 8, 56.
| Crossref | GoogleScholarGoogle Scholar |
[13]
P. I. Boon ,
Carbon cycling in Australian wetlands: the importance of methane.
Verh. Internat. Verein Limnol. 2000
, 27, 37.
[14]
A. P. Annachhatre ,
S. Suktrakoolvait ,
Biological sulfate reduction using molasses as a carbon source.
Water Environ. Res. 2001
, 73, 118.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[15]
D. R. Lovley ,
M. J. Klug ,
Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations.
Appl. Environ. Microbiol. 1983
, 45, 187.
| PubMed |
[16]
K. M. Kuivila ,
J. W. Murray ,
A. H. Devol ,
P. C. Novelli ,
Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington.
Geochim. Cosmochim. Acta 1989
, 53, 409.
| Crossref | GoogleScholarGoogle Scholar |
[17]
[18]
R. H. Hesslein ,
An in situ sampler for close interval pore water studies.
Limnol. Oceanogr. 1976
, 21, 912.
| Crossref | GoogleScholarGoogle Scholar |
[19]
N. J. Grigg ,
I. T. Webster ,
P. W. Ford ,
Pore-water convection induced by peeper emplacement in saline sediment.
Limnol. Oceanogr. 1999
, 44, 425.
| Crossref | GoogleScholarGoogle Scholar |
[20]
R. Carignan ,
R. Gachter ,
Use of diffusion samplers in oligotrophic lake sediments: effects of free oxygen in sampler material.
Limnol. Oceanogr. 1994
, 39, 468.
| Crossref | GoogleScholarGoogle Scholar |
[21]
[22]
[23]
L. D. Anderson ,
M. L. Delaney ,
Sequential extraction and analysis of phosphorus in marine sediments: streamlining of the SEDEX procedure.
Limnol. Oceanogr. 2000
, 45, 509.
| Crossref | GoogleScholarGoogle Scholar |
[24]
[25]
B. P. Boudreau ,
The diffusive tortuosity of fine-grained unlithified sediments.
Geochim. Cosmochim. Acta 1996
, 60, 3139.
| Crossref | GoogleScholarGoogle Scholar |
[26]
Y.-H. Li ,
S. Gregory ,
Diffusion of ions in sea water and in deep-sea sediments.
Geochim. Cosmochim. Acta 1974
, 38, 703.
| Crossref | GoogleScholarGoogle Scholar |
[27]
N. Ohkubo ,
O. Yagi ,
M. Okada ,
Studies on the succession of blue-green algae, Microcystis, Anabaena, Oscillatoria and Phormidium in Lake Kasumigaura.
Environ. Technol. 1993
, 14, 433.
| Crossref | GoogleScholarGoogle Scholar |
[28]
C. Yin ,
Z. Lan ,
M. Zhao ,
H. Bernhardt ,
Determination of phosphorus concentration threshold for algal growth in eutrophic Chaohu Lake, China.
J. Environ. Sci. Health, Part. A: Environ. Sci. Eng. Toxic Hazard. Subst. Control 1992
, 27, 433.
| Crossref | GoogleScholarGoogle Scholar |
[29]
[30]
X. Shi ,
L. Yang ,
X. Niu ,
L. Xiao ,
Z. Kong ,
B.-Q. Qin ,
G. Gao ,
Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness.
Microbiol. Res. 2003
, 158, 345.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[31]
V. Krivtsov ,
E. G. Bellinger ,
D. C. Sigee ,
Elemental composition of Microcystis aeruginosa under conditions of lake nutrient depletion.
Aquat. Ecol. 2005
, 39, 123.
| Crossref | GoogleScholarGoogle Scholar |
[32]
[33]
S. M. Mitrovic ,
R. L. Oliver ,
C. Rees ,
L. C. Bowling ,
R. T. Buckney ,
Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers.
Freshw. Biol. 2003
, 48, 164.
| Crossref | GoogleScholarGoogle Scholar |
[34]
W. Van Dok ,
B. T. Hart ,
Akinete germination in Anabena circinalis (Cyanophyta).
J. Phycol. 1997
, 33, 12.
| Crossref | GoogleScholarGoogle Scholar |
[35]
P. A. Thompson ,
I. Jameson ,
S. I. Blackburn ,
The influence of light quality on akinete formation and germination in the toxic cyanobacterium Anabaena circinalis.
Harmful Algae 2009
, 8, 504.
| Crossref | GoogleScholarGoogle Scholar |
[36]
P. D. Baker ,
D. Bellifemine ,
Environmental influences on akinete germination of Anabaena circinalis and implications for management of cyanobacterial blooms.
Hydrobiologia 2000
, 427, 65.
| Crossref | GoogleScholarGoogle Scholar |
[37]
[38]
B. M. Spears ,
L. Carvalho ,
R. Perkins ,
A. Kirika ,
D. M. Paterson ,
Sediment phosphorus cycling in a large shallow lake: spatio-temporal variation in phosphorus pools and release.
Hydrobiologia 2007
, 584, 37.
| Crossref | GoogleScholarGoogle Scholar |
[39]
W. Davison ,
The solubility of iron sulphides in synthetic and natural waters at ambient temperature.
Aquat. Sci. 1991
, 53, 309.
| Crossref | GoogleScholarGoogle Scholar |
[40]
T. F. Rozan ,
M. Taillefert ,
R. E. Trouwborst ,
B. T. Glazer ,
S. F. Ma ,
J. Herszage ,
L. M. Valdes ,
K. S. Price ,
G. W. Luther ,
Iron–sulfur–phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms.
Limnol. Oceanogr. 2002
, 47, 1346.
| Crossref | GoogleScholarGoogle Scholar |
[41]
K. C. J. Van Rees ,
E. A. Sudicky ,
P. S. C. Rao ,
K. R. Reddy ,
Evaluation of laboratory techniques for measuring diffusion coefficients in sediments.
Environ. Sci. Technol. 1991
, 25, 1605.
| Crossref | GoogleScholarGoogle Scholar |
[42]
N. R. Urban ,
C. Dinkel ,
B. Wehrli ,
Solute transfer across the sediment surface of a eutrophic lake: I. Porewater profiles from dialysis samplers.
Aquat. Sci. 1997
, 59, 1.
| Crossref | GoogleScholarGoogle Scholar |
[43]
I. Schauser ,
I. Chorus ,
J. Lewandowski ,
Effects of nitrate on phosphorus release: comparison of two Berlin lakes.
Acta Hydrochim. Hydrobiol. 2006
, 34, 325.
| Crossref | GoogleScholarGoogle Scholar |
[44]
M. Søndergaard ,
P. Kristensen ,
E. Jeppesen ,
Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake Søbygaard, Denmark.
Hydrobiologia 1993
, 253, 345.
| Crossref | GoogleScholarGoogle Scholar |
[45]
D. F. Burger ,
D. P. Hamilton ,
C. A. Pilditch ,
M. M. Gibbs ,
Benthic nutrient fluxes in a eutrophic, polymictic lake.
Hydrobiologia 2007
, 584, 13.
| Crossref | GoogleScholarGoogle Scholar |
[46]
G. Phillips ,
R. Jackson ,
C. Bennett ,
A. Chilvers ,
The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation.
Hydrobiologia 1994
, 275–276, 445.
| Crossref | GoogleScholarGoogle Scholar |
[47]
E. Kristensen ,
S. I. Ahmed ,
A. H. Devol ,
Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest?
Limnol. Oceanogr. 1995
, 40, 1430.
| Crossref | GoogleScholarGoogle Scholar |
[48]
B. Boström ,
K. Pettersson ,
Different patterns of phosphorus release from lake sediments in laboratory experiments.
Hydrobiologia 1982
, 92, 415.
| Crossref | GoogleScholarGoogle Scholar |
[49]
M. R. Grace ,
T. Jakob ,
D. Donnert ,
R. Beckett ,
Effect of an alternating oxic/anoxic regime on a (freshwater) Yarra River sediment.
Aust. J. Chem. 2003
, 56, 923.
| Crossref | GoogleScholarGoogle Scholar |
[50]
K. Hansen ,
S. Mouridsen ,
E. Kristensen ,
The impact of Chironomus plumosus larvae on organic matter decay and nutrient (N, P) exchange in a shallow eutrophic lake sediment following a phytoplankton sedimentation.
Hydrobiologia 1997
, 364, 65.
| Crossref | GoogleScholarGoogle Scholar |
[51]
B. B. Jørgensen ,
N. P. Revsbech ,
Diffusive boundary layers and the oxygen uptake of sediments and detritus.
Limnol. Oceanogr. 1985
, 30, 111.
| Crossref | GoogleScholarGoogle Scholar |
[52]
K. Y. Maillacheruvu ,
G. F. Parkin ,
Kinetics of growth, substrate utilization and sulfide toxicity for propionate, acetate, and hydrogen utilizers in anaerobic systems.
Water Environ. Res. 1996
, 68, 1099.
| Crossref | GoogleScholarGoogle Scholar |
[53]
I. A. Sanders ,
C. M. Heppell ,
J. A. Cotton ,
G. Wharton ,
A. G. Hildrew ,
E. J. Flowers ,
M. Trimmer ,
Emission of methane from chalk streams has potential implications for agricultural practices.
Freshw. Biol. 2007
, 52, 1176.
| Crossref | GoogleScholarGoogle Scholar |
[54]
P. Casper ,
S. C. Maberly ,
G. H. Hall ,
B. J. Finlay ,
Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere.
Biogeochemistry 2000
, 49, 1.
| Crossref | GoogleScholarGoogle Scholar |
[55]
B. Moss ,
The art and science of lake restoration.
Hydrobiologia 2007
, 581, 15.
| Crossref | GoogleScholarGoogle Scholar |
[56]
E. Jeppesen ,
M. Søndergaard ,
M. Meerhoff ,
T. L. Lauridsen ,
J. P. Jensen ,
Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead.
Hydrobiologia 2007
, 584, 239.
| Crossref | GoogleScholarGoogle Scholar |
[57]
[58]
M. R. Grace ,
T. M. Hislop ,
B. T. Hart ,
R. Beckett ,
Effect of saline groundwater on the aggregation and settling of suspended particles in a turbid Australian river.
Colloids Surf. A 1997
, 120, 123.
| Crossref | GoogleScholarGoogle Scholar |
[59]
[60]
S. Wang ,
X. Jin ,
Y. Pang ,
H. Zhao ,
X. Zhao ,
F. Wu ,
Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China.
J. Colloid Interface Sci. 2005
, 289, 339.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[61]
S. P. Klapwijk ,
J. M. W. Kroon ,
M.-L. Meijer ,
Available phosphorus in lake sediments in the Netherlands.
Hydrobiologia 1982
, 92, 491.
| Crossref | GoogleScholarGoogle Scholar |
[62]
T. B. Reynoldson ,
R. C. Baily ,
K. E. Day ,
R. H. Norris ,
Biological guidelines for freshwater sediment based on BEnthic Assessment of SedimenT (the BEAST) using a multivariate approach for predicting biological state.
Austral Ecol. 1995
, 20, 198.
| Crossref | GoogleScholarGoogle Scholar |
[63]
K. Krogerus ,
P. Ekholm ,
Phosphorus in settling matter and bottom sediments in lakes loaded by agriculture.
Hydrobiologia 2003
, 492, 15.
| Crossref | GoogleScholarGoogle Scholar |