Ecosystem functioning from a geomicrobiological perspective – a conceptual framework for biogeochemical iron cycling
Caroline Schmidt A , Sebastian Behrens A and Andreas Kappler A BA Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Sigwartstrasse 10, D-72076 Tuebingen, Germany.
B Corresponding author. Email: andreas.kappler@uni-tuebingen.de
Environmental Chemistry 7(5) 399-405 https://doi.org/10.1071/EN10040
Submitted: 22 April 2010 Accepted: 12 August 2010 Published: 13 October 2010
Environmental context. Microbial ecosystems are characterised by the interplay of various microorganisms with their biotic and abiotic environment. Biogeochemical niches host adapted microbial communities that are in constant competition for substrates and nutrients. Their natural distribution, interactions and responses to fluctuating environmental conditions are often impossible to simulate in laboratory studies. Using biogeochemical iron redox cycling as an example, we suggest the application of a conceptual framework to improve our understanding of the principal functioning of (geo)microbial ecosystems.
Abstract. Our knowledge on how microbial ecosystems function profits from the support of biogeochemical concepts which describe the cycling of elements through various geochemical gradients. Using the example of the iron cycle in freshwater sediments, we propose a theoretical framework that describes the dynamic interactions between chemical and microbial FeII oxidation and FeIII reduction, their spatial location and how they are affected by changing environmental conditions. This contribution emphasises the complexity ecological research faces when dealing with heterogeneous and dynamic natural systems. Our concept aims to provide further insights into how flows of energy and matter are controlled during microbial and chemical Fe redox transformations and how various key variables, such as substrate availability and competition as well as thermodynamic and kinetic parameters, affect flow directions.
Additional keywords: bioenergetics, biogeochemistry, micro-ecology.
Acknowledgements
This work was supported by funding from the German Research Foundation (DFG; KA 1736/16-1) and a European Marie Curie Reintegration Grant (MC-ERG; PERG04-GA-2008-239252) to C. Schmidt, S. Behrens and A. Kappler and by funding from the Stifterverband der Wissenschaft to A. Kappler.
[1]
[2]
M. Kühl ,
C. Lassen ,
B. B. Jorgensen ,
Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobes.
Mar. Ecol. Prog. Ser. 1994
, 105, 139.
| Crossref | GoogleScholarGoogle Scholar |
[3]
B. Schink ,
Energetics of syntrophic cooperation in methanogenic degradation.
Microbiol. Mol. Biol. Rev. 1997
, 61, 262.
|
CAS |
PubMed |
[4]
G. Schäfer ,
M. Engelhard ,
V. Müller ,
Bioenergetics of the Archaea.
Microbiol. Mol. Biol. Rev. 1999
, 63, 570.
| PubMed |
[5]
[6]
W. E. Krumbein ,
Gone with the wind – a second blow against spontaneous generation.
Aerobiologia 1995
, 11, 205.
| Crossref | GoogleScholarGoogle Scholar |
[7]
[8]
M. Blothe ,
E. E. Roden ,
Microbial iron redox cycling in a circumneutral-pH groundwater seep.
Appl. Environ. Microbiol. 2009
, 75, 468.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[9]
A. M. Bruun ,
K. Finster ,
H. P. Gunnlaugsson ,
P. Nornberg ,
M. W. Friedrich ,
A comprehensive investigation on iron cycling in a freshwater seep including microscopy, cultivation and molecular community analysis.
Geomicrobiol. J. 2010
, 27, 15.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
D. Emerson ,
Potential for iron reduction and iron cycling in iron oxy-hydroxide rich microbial mats at Loihi Seamount.
Geomicrobiol. J. 2009
, 26, 639.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[11]
J. V. Weiss ,
D. Emerson ,
J. P. Megonigal ,
Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil.
FEMS Microbiol. Ecol. 2004
, 48, 89.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[12]
G. K. Druschel ,
D. Emerson ,
R. Sutka ,
P. Suchecki ,
G. W. Luther ,
Low oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms.
Geochim. Cosmochim. Acta 2008
, 72, 3358.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[13]
S. C. Neubauer ,
D. Emerson ,
J. P. Megonigal ,
Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rizosphere.
Appl. Environ. Microbiol. 2002
, 68, 3988.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[14]
A. Kappler ,
K. L. Straub ,
Geomicrobiological cycling of iron.
Rev. Mineral. Geochem. 2005
, 59, 85.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
F. Widdel ,
S. Schnell ,
S. Heising ,
A. Ehrenreich ,
B. Assmus ,
B. Schink ,
Ferrous iron oxidation by anoxygenic phototrophic bacteria.
Nature 1993
, 362, 834.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[16]
K. L. Straub ,
M. Benz ,
B. Schink ,
F. Widdel ,
Anaerobic, nitrate-dependent microbial oxidation of ferrous iron.
Appl. Environ. Microbiol. 1996
, 62, 1458.
|
CAS |
PubMed |
[17]
D. Hafenbradl ,
M. Keller ,
R. Dirmeier ,
R. Rachel ,
P. Rossnagel ,
S. Burggraf ,
H. Huber ,
K. O. Stetter ,
Ferroglobus placidus gen nov, sp nov, a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions.
Arch. Microbiol. 1996
, 166, 308.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[18]
E. M. Muehe ,
S. Gerhardt ,
B. Schink ,
A. Kappler ,
Ecophysiology and the energetic benefit of mixotrophic Fe(II)oxidation by various strains of nitrate-reducing bacteria.
FEMS Microbiol. Ecol. 2009
, 70, 335.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
F. Hegler ,
N. R. Posth ,
J. Jiang ,
A. Kappler ,
Physiology of phototrophic iron(II)-oxidizing bacteria – implications for modern and ancient environments.
FEMS Microbiol. Ecol. 2008
, 66, 250.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[20]
M. Benz ,
A. Brune ,
B. Schink ,
Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria.
Arch. Microbiol. 1998
, 169, 159.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[21]
N. Wrage ,
G. L. Velthof ,
M. L. van Beusichem ,
O. Oenema ,
Role of nitrifier denitrification in the production of nitrous oxide.
Soil Biol. Biochem. 2001
, 33, 1723.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[22]
S. A. Crowe ,
C. A. Jones ,
S. Katsev ,
C. Magen ,
A. H. O’Neill ,
A. Sturm ,
D. E. Canfield ,
G. D. Haffner ,
et al. Photoferrotrophs thrive in an Archean Ocean analogue.
Proc. Natl. Acad. Sci. USA 2008
, 105, 15938.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[23]
J. A. Raven ,
J. E. Kübler ,
J. Beardall ,
Put out the light, and then put out the light.
J. Mar. Biol. Assoc. U.K. 2000
, 80, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
S. Heising ,
L. Richter ,
W. Ludwig ,
B. Schink ,
Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a ‘Geospirillum’ sp. Strain.
Arch. Microbiol. 1999
, 172, 116.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[25]
S. Gerhardt ,
A. Brune ,
B. Schink ,
Dynamics of redox changes of iron caused by light–dark variations in littoral sediment of a freshwater lake.
Biogeochemistry 2005
, 74, 323.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
[27]
A. Ehrenreich ,
F. Widdel ,
Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.
Appl. Environ. Microbiol. 1994
, 60, 4517.
|
CAS |
PubMed |
[28]
K. L. Straub ,
F. A. Rainey ,
F. Widdel ,
Rhodovulurn iodosurn sp. nov. and Rhodovulum robiginosurn sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria.
Int. J. Syst. Bacteriol. 1999
, 49, 729.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[29]
[30]
C. R. Myers ,
J. M. Myers ,
Ferric iron reduction-linked growth yields of Shewanella-Putrefaciens MR-1.
J. Appl. Bacteriol. 1994
, 76, 253.
|
CAS |
PubMed |
[31]
Y. A. Gorby ,
S. Yanina ,
J. S. McLean ,
K. Rosso ,
D. Moyles ,
A. Dohnalkova ,
T. J. Beveridge ,
I. S. Chang ,
et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.
Proc. Natl. Acad. Sci. USA 2006
, 103, 11358.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[32]
M. E. Jones ,
C. M. Fennessey ,
T. J. DiChristina ,
M. Taillefert ,
Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.
Environ. Microbiol. 2010
, 12, 938.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[33]
C. M. Fennessey ,
M. E. Jones ,
M. Taillefert ,
T. J. DiChristina ,
Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1.
Appl. Environ. Microbiol. 2010
, 76, 2425.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[34]
D. R. Lovley ,
J. D. Coates ,
E. L. Blunt-Harris ,
E. J. P. Phillips ,
J. C. Woodward ,
Humic substances as electron acceptors for microbial respiration.
Nature 1996
, 382, 445.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[35]
D. R. Lovley ,
J. L. Fraga ,
E. L. Blunt-Harris ,
L. A. Hayes ,
E. J. P. Phillips ,
J. D. Coates ,
Humic substances as a mediator for microbially catalyzed metal reduction.
Acta Hydrochim. Hydrobiol. 1998
, 26, 152.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
J. D. Coates ,
D. J. Ellis ,
E. L. Blunt-Harris ,
C. V. Gaw ,
E. E. Roden ,
D. R. Lovley ,
Recovery of humic-reducing bacteria from a diversity of environments.
Appl. Environ. Microbiol. 1998
, 64, 1504.
|
CAS |
PubMed |
[37]
J. Jiang ,
A. Kappler ,
Kinetics and thermodynamics of microbial and chemical reduction of humic substances: implications for electron shuttling in natural environments.
Environ. Sci. Technol. 2008
, 42, 3563.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[38]
A. Kappler ,
M. Benz ,
B. Schink ,
A. Brune ,
Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
FEMS Microbiol. Ecol. 2004
, 47, 85.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[39]
M. Wolf ,
A. Kappler ,
J. Jiang ,
R. Meckenstock ,
Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens.
Environ. Sci. Technol. 2009
, 43, 5679.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[40]
H. von Canstein ,
J. Ogawa ,
S. Shimizu ,
J. R. Lloyd ,
Secretion of flavins by Shewanella species and their role in extracellular electron transfer.
Appl. Environ. Microbiol. 2008
, 74, 615.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[41]
E. Marsili ,
D. B. Baron ,
I. D. Shikhare ,
D. Coursolle ,
J. A. Gralnick ,
D. R. Bond ,
Shewanella secretes flavins that mediate extracellular electron transfer.
Proc. Natl. Acad. Sci. USA 2008
, 105, 3968.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
E. E. Roden ,
A. Kappler ,
I. Bauer ,
J. Jiang ,
A. Paul ,
R. Stoesser ,
H. Konishi ,
H. Xu ,
Extracellular electron transfer through microbial reduction of solid-phase humic substances.
Nat. Geosci. 2010
, 3, 417.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[43]
L. P. Nielsen ,
N. Risgaard-Petersen ,
H. Fossing ,
P. B. Christensen ,
M. Sayama ,
Electric currents couple spatially separated biogeochemical processes in marine sediment.
Nature 2010
, 463, 1071.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[44]
K. H. Nealson ,
Sediments reaction defy dogma.
Nature 2010
, 463, 1033.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[45]
K. A. Weber ,
M. Urrutia ,
P. F. Churchill ,
R. K. Kukkadapu ,
E. E. Roden ,
Anaerobic redox cycling of iron by freshwater sediment microorganisms.
Environ. Microbiol. 2006
, 8, 100.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[46]
W. C. Lin ,
M. V. Coppi ,
D. R. Lovley ,
Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor.
Appl. Environ. Microbiol. 2004
, 70, 2525.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[47]
K. H. Nealson ,
D. A. Saffarini ,
Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation.
Annu. Rev. Microbiol. 1994
, 48, 311.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[48]
R. Amann ,
M. Kühl ,
In situ methods for assessment of microorganisms and their activities.
Curr. Opin. Microbiol. 1998
, 1, 352.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[49]
J. J. Dynes ,
T. Tyliszczak ,
T. Araki ,
J. R. Lawrence ,
G. D. W. Swerhone ,
G. G. Leppard ,
A. P. Hitchcock ,
Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission x-ray microscopy.
Environ. Sci. Technol. 2006
, 40, 1556.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[50]
J. Miot ,
K. Benzerara ,
M. Obst ,
A. Kappler ,
F. Hegler ,
S. Schadler ,
C. Bouchez ,
F. Guyot ,
et al. Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria.
Appl. Environ. Microbiol. 2009
, 75, 5586.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[51]
V. J. Orphan ,
C. H. House ,
Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleo-microbial processes.
Geobiology 2009
, 7, 360.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[52]
L. Polerecky ,
A. Bissett ,
M. Al-Najjar ,
P. Faerber ,
H. Osmers ,
P. A. Suci ,
P. Stoodley ,
D. de Beer ,
Modular spectral imaging system for discrimination of pigments in cells and microbial communities.
Appl. Environ. Microbiol. 2009
, 75, 758.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |