Solubility of mimetite Pb5(AsO4)3Cl at 5–55°C
Tomasz BajdaDepartment of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland. Email: bajda@geol.agh.edu.pl
Environmental Chemistry 7(3) 268-278 https://doi.org/10.1071/EN10021
Submitted: 9 March 2010 Accepted: 24 April 2010 Published: 2 May 2010
Environmetal context. The mobility of toxic arsenic compounds in the environment can be controlled by the solubility of certain minerals. To predict and model the fate and behaviour of these contaminants, the solubility and related thermodynamic properties of the lead and arsenic mineral mimetite were determined. The data obtained in this study will be used to optimise and increase the effectiveness of remediation procedures that are already applied to contaminated sites.
Abstract. The solubility of the synthesised mimetite was measured in a series of dissolution experiments at 5–55°C and at pH values between 2.00 and 2.75. The solubility product logKSP for the reaction Pb5(AsO4)3Cl ↔ 5Pb2+ + 3AsO43– + Cl– at 25°C is –76.35 ± 1.01. The free energy of formation ΔGf,2980 calculated from this measured solubility product equals –2634.3 ± 5.9 kJ mol–1. The temperature dependence of the logKSP is non-linear, indicating that the enthalpy of the reaction depends on the temperature. The enthalpy of the formation of mimetite ΔHf0, is –2965.9 ± 4.7 kJ mol–1, the entropy, ΔS0, is 39.5 J mol–1 K–1, and the heat capacity, ΔCp,f0 is –6172 ± 105 J mol–1 K–1. Hydrochemical modelling indicates that regardless of the composition of the background solution, Pb5(AsO4)3Cl is most stable at neutral to weakly alkaline pH.
Additional keywords: arsenic, dissolution, lead, synthesis, thermodynamic properties.
Acknowledgements
I thank Maciej Manecki (AGH-UST) for help with calculations, fruitful discussions and for his comments on an earlier version of this manuscript. Marek Sikora, Adam Gaweł, Włodzimierz Mozgawa (all from AGH UST) are thanked for their assistances with AAS, XRD, and FTIR analyses respectively. I greatly appreciate the comments of the reviewers, which helped to improve the manuscript. This work was supported by the Ministry of Science and Higher Education as AGH UST grant no. 10.10.140.681 from the University of Science and Technology.
[1]
[2]
[3]
B. K. Mandal ,
K. T. Suzuki ,
Arsenic round the world: a review.
Talanta 2002
, 58, 201.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[4]
J. S. Lee ,
J. O. Nriagu ,
Stability constant for metal arsenates.
Environ. Chem. 2007
, 4, 123.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[5]
L. Marini ,
M. Accornero ,
Prediction of the thermodynamic properties of metal–arsenate and metal–arsenite aqueous complexes to high temperatures and pressures and some geological consequences.
Environ. Geol. 2007
, 52, 1343.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[6]
H. L. Liu ,
Y. N. Zhu ,
H. X. Yu ,
Solubility and stability of lead arsenates at 25°C.
J. Environ. Sci. Health A 2009
, 44, 1465.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[7]
[8]
J. Matschullat ,
Arsenic in the geosphere – a review.
Sci. Total Environ. 2000
, 249, 297.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[9]
B. A. Manning ,
S. Goldberg ,
Adsorption and stability of arsenic(III) at the clay mineral–water interface.
Environ. Sci. Technol. 1997
, 31, 2005.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[10]
S. Chakravarty ,
V. Dureja ,
G. Bhattacharyya ,
S. Maity ,
S. Bhattacharjee ,
Removal of arsenic from ground water using low cost ferruginous manganese ore.
Water Res. 2002
, 36, 625.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[11]
S. Goldberg ,
Chemical modeling of arsenate adsorption on aluminum and iron oxide minerals.
Soil Sci. Soc. Am. J. 1986
, 52, 1154.
[12]
T. F. Lin ,
J. K. Wu ,
Adsorption of arsenite and arsenate with inactivated alumina grains: equilibrium and kinetics.
Water Res. 2001
, 35, 2049.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[13]
M. L. Pierce ,
C. B. Moore ,
Adsorption of arsenite and arsenate on amorphous iron hydroxide.
Water Res. 1982
, 16, 1247.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[14]
S. M. Fendorf ,
J. Eick ,
P. R. Grossl ,
D. L. Sparks ,
Arsenate and chromate retention mechanisms on goethite. 1. Surface structure.
Environ. Sci. Technol. 1997
, 31, 315.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[15]
Z. Hongshao ,
R. Stanforth ,
Competitive adsorption of phosphate and arsenate on goethite.
Environ. Sci. Technol. 2001
, 35, 4753.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[16]
L. Carlson ,
J. M. Bigham ,
U. Schwertmann ,
A. Kyek ,
Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues.
Environ. Sci. Technol. 2002
, 36, 1712.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[17]
J. Giménez ,
M. Martínez ,
J. Pablo ,
M. Rovira ,
L. Duro ,
Arsenic sorption onto natural hematite, magnetite, and goethite.
J. Hazard. Mater. 2007
, 141, 575.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
[18]
W. Chen ,
R. Parette ,
J. Zou ,
F. S. Cannon ,
B. A. Dempsey ,
Arsenic removal by iron-modified activated carbon.
Water Res. 2007
, 41, 1851.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[19]
J. V. Bothe ,
P. W. Brown ,
Arsenic immobilization by calcium arsenate formation.
Environ. Sci. Technol. 1999
, 33, 3806.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[20]
Y. N. Zhu ,
X. H. Zhang ,
Q. L. Xie ,
D. Q. Wang ,
G. W. Cheng ,
Solubility and stability of calcium arsenates at 25°C.
Water Air Soil Pollut. 2006
, 169, 221.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[21]
V. G. Chukhlantsev ,
The solubility products of a number of arsenates.
J. Anal. Chem. – USSR 1956
, 11, 565.
|
CAS |
[22]
[23]
D. Langmuir ,
J. Mahoney ,
J. Rowson ,
Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings.
Geochim. Cosmochim. Acta 2006
, 70, 2942.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[24]
J. N. Moore ,
W. H. Ficklin ,
C. Johns ,
Partitioning of arsenic and metals in reducing sulfidic sediments.
Environ. Sci. Technol. 1988
, 22, 432.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[25]
D. Craw ,
D. Falconer ,
J. H. Youngson ,
Environmental arsenopyrite stability and dissolution: theory, experiment, and field observations.
Chem. Geol. 2003
, 199, 71.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[26]
D. Mohan ,
C. U. Pittman ,
Arsenic removal from water/wastewater using adsorbents – a critical review.
J. Hazard. Mater. 2007
, 142, 1.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[27]
L. G. Twidwell ,
K. O. Plessas ,
P. G. Comba ,
D. R. Dahnke ,
Removal of arsenic from wastewater and stabilization of arsenic bearing waste solids: summary of experimental studies.
J. Hazard. Mater. 1994
, 36, 69.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[28]
[29]
M. C. F. Magalhães ,
Arsenic. An environmental problem limited by solubility.
Pure Appl. Chem. 2002
, 74, 1843.
| Crossref | GoogleScholarGoogle Scholar |
[30]
M. C. F. Magalhães ,
J. D. P. de Jesus ,
The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II).
Min. Mag. 1988
, 52, 679.
| Crossref | GoogleScholarGoogle Scholar |
[31]
M. C. F. Magalhães ,
M. C. M. Silva ,
Stability of lead arsenates.
Monatsh. Chem. 2003
, 134, 735.
| Crossref | GoogleScholarGoogle Scholar |
[32]
[33]
A. Wojnar ,
M. Manecki ,
T. Bajda ,
Bioaccessibility of As(V) and Pb(II) from mimetite.
Geochim. Cosmochim. Acta 2005
, 69, A628.
[34]
A. Nakamoto ,
Y. Urasima ,
S. Sugiura ,
H. Nakano ,
T. Yachi ,
K. Tadokoro ,
Pyromorphite-mimetite minerals from the Otaru–Matsukura barite mine in Hokkaido, Japan.
Mineral. J. 1969
, 6, 85.
|
CAS |
[35]
E. A. Perseil ,
P. Blanc ,
D. Ohnenstetter ,
As-bearing fluorapatite in manganiferous deposits from St Marcel Praborna, Val d’Aosta, Italy.
Can. Mineral. 2000
, 38, 101.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[36]
B. Gołębiowska ,
A. Pieczka ,
W. Franus ,
Ca-bearing phosphatian mimetite from Rędziny, Lower Silesia, Poland.
N. Jb. Miner. Mh. 2002
, 2002, 31.
| Crossref | GoogleScholarGoogle Scholar |
[37]
E. R. Kreidler ,
F. A. Hummel ,
The crystal chemistry of apatite: structure fields of fluoro- and chlorapatite.
Am. Mineral. 1970
, 55, 170.
|
CAS |
[38]
[39]
[40]
[41]
M. Handke ,
W. Mozgawa ,
M. Nocuń ,
Specific features of the IR spectra of silicate glasses.
J. Mol. Struct. 1994
, 325, 129.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[42]
R. B. R. Mesquita ,
S. M. V. Fernandes ,
A. O. S. S. Rangel ,
Turbidimetric determination of chloride in different types of water using a single sequential injection analysis system.
J. Environ. Monit. 2002
, 4, 458.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[43]
R. K. Dhar ,
Y. Zheng ,
J. Rubenstone ,
A. van Geen ,
A rapid colorimetric method for measuring arsenic concentrations in groundwater.
Anal. Chim. Acta 2004
, 526, 203.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[44]
[45]
[46]
[47]
Y. Dai ,
J. M. Hughes ,
P. M. Moore ,
The crystal structures of mimetite and clinomimetite, Pb5(AsO4)3Cl.
Can. Mineral. 1991
, 29, 369.
|
CAS |
[48]
A. I. Inegbenebor ,
J. H. Thomas ,
P. A. Williams ,
The chemical stability of mimetite and distribution coefficients for pyromorphite–mimetite solid-solutions.
Min. Mag. 1989
, 53, 363.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[49]
[50]
[51]
M. Williams ,
Arsenic in mine water: an international study.
Environ. Geol. 2001
, 40, 267.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[52]
S. Sauvé ,
M. B. McBride ,
W. H. Hendershot ,
Speciation of lead in contaminated soils.
Environ. Pollut. 1997
, 98, 149.
| Crossref | GoogleScholarGoogle Scholar |
[53]
[54]
J. D. Cotter-Howells ,
S. Capron ,
Remediation of contaminated land by formation of heavy metals phosphates.
Appl. Geochem. 1996
, 11, 335.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[55]
J. Flis ,
M. Manecki ,
T. Bajda ,
Solubility of pyromorphite–mimetite solid solutions at 5–65°C: variability of thermodynamic stability of minerals from pyromorphite–mimetite series at 5–65°C.
Geochim. Cosmochim. Acta 2007
, 71, A285.
[56]
[57]
E. L. Shock ,
D. C. Sassani ,
M. Willis ,
D. A. Sverjensky ,
Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes.
Geochim. Cosmochim. Acta 1997
, 61, 907.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[58]
E. L. Shock ,
H. C. Helgeson ,
Calculation of the thermodynamic and transport properties of aqueous species at high pressure and temperatures: correlation algorithms for ionic species and equations of state prediction to 5 kb and 1000°C.
Geochim. Cosmochim. Acta 1988
, 52, 2009.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[59]
R. B. Perkins ,
C. D. Palmer ,
Solubility of Ca6[Al(OH)6]2(CrO4)3·26H2O, the chromate analog of ettringite; 5–75°C.
Appl. Geochem. 2000
, 15, 1203.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[60]
[61]
[62]
L. Xie ,
D. E. Giammar ,
Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite.
Environ. Sci. Technol. 2007
, 41, 8050.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
PubMed |
[63]
D. D. Wagman ,
W. H. Evans ,
V. B. Parker ,
R. H. Schumm ,
I. Halow ,
S. M. Bailey ,
K. L. Churney ,
F. L. Nuttall ,
The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units.
J. Phys. Chem. Ref. Data 1982
, 11, 1.
| Crossref |
[64]
F. H. Sweeton ,
R. E. Mesmer ,
C. F. J. Baes ,
Acidity measurements at elevated temperatures. VII. Dissociation of water.
J. Solution Chem. 1974
, 3, 191.
| Crossref | GoogleScholarGoogle Scholar |
CAS |
[65]
[66]
[67]
[68]
S. R. Levitt ,
R. A. Condrate ,
The vibrational spectra of lead apatites.
Am. Mineral. 1970
, 55, 1562.
|
CAS |
[69]
G. Bartholomäi ,
W. E. Klee ,
The vibrational spectra of pyromorphite, vanadinite and mimetite.
Spectr. Acta 1978
, 34, 831.
| Crossref | GoogleScholarGoogle Scholar |
[70]
R. L. Frost ,
J. M. Bouzaid ,
S. Palmer ,
The structure of mimetite, arsenian pyromorphite and hedyphane – a Raman spectroscopic study.
Polyhedron 2007
, 26, 2964.
| Crossref | GoogleScholarGoogle Scholar |
CAS |